Home
Class 12
MATHS
If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(ve...

If `vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca)`
Such that `x+y+z!=0` and `vecr.(veca+vecb+vecc)=x+y+z`, then `[veca vecb vecc]=`

A

0

B

1

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant \([ \vec{a} \, \vec{b} \, \vec{c} ]\) given the equation: \[ \vec{r} = x (\vec{a} \times \vec{b}) + y (\vec{b} \times \vec{c}) + z (\vec{c} \times \vec{a}) \] and the condition: \[ \vec{r} \cdot (\vec{a} + \vec{b} + \vec{c}) = x + y + z \] ### Step 1: Substitute \(\vec{r}\) into the dot product equation We start by substituting the expression for \(\vec{r}\) into the dot product equation: \[ (x (\vec{a} \times \vec{b}) + y (\vec{b} \times \vec{c}) + z (\vec{c} \times \vec{a})) \cdot (\vec{a} + \vec{b} + \vec{c}) = x + y + z \] ### Step 2: Expand the left-hand side Now we will expand the left-hand side using the distributive property of the dot product: \[ x ((\vec{a} \times \vec{b}) \cdot (\vec{a} + \vec{b} + \vec{c})) + y ((\vec{b} \times \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c})) + z ((\vec{c} \times \vec{a}) \cdot (\vec{a} + \vec{b} + \vec{c})) \] ### Step 3: Evaluate each dot product Using the property of the cross product, we know that: - \((\vec{a} \times \vec{b}) \cdot \vec{a} = 0\) - \((\vec{a} \times \vec{b}) \cdot \vec{b} = 0\) Thus, we only need to consider the term with \(\vec{c}\): \[ x (\vec{a} \times \vec{b}) \cdot \vec{c} + y ((\vec{b} \times \vec{c}) \cdot \vec{a}) + y ((\vec{b} \times \vec{c}) \cdot \vec{b}) + z ((\vec{c} \times \vec{a}) \cdot \vec{a}) + z ((\vec{c} \times \vec{a}) \cdot \vec{b}) + z ((\vec{c} \times \vec{a}) \cdot \vec{c}) \] The terms involving \(\vec{a}\) and \(\vec{b}\) will be zero, leaving us with: \[ x (\vec{a} \times \vec{b}) \cdot \vec{c} + y (\vec{b} \times \vec{c}) \cdot \vec{a} + z (\vec{c} \times \vec{a}) \cdot \vec{b} \] ### Step 4: Rewrite the dot products as determinants Using the identity \((\vec{u} \times \vec{v}) \cdot \vec{w} = [\vec{u} \, \vec{v} \, \vec{w}]\), we can rewrite our expression: \[ x [\vec{a} \, \vec{b} \, \vec{c}] + y [\vec{b} \, \vec{c} \, \vec{a}] + z [\vec{c} \, \vec{a} \, \vec{b}] = x + y + z \] ### Step 5: Factor out the determinant Notice that the determinants can be rearranged without changing their sign: \[ x [\vec{a} \, \vec{b} \, \vec{c}] + y [\vec{a} \, \vec{b} \, \vec{c}] + z [\vec{a} \, \vec{b} \, \vec{c}] = (x + y + z) [\vec{a} \, \vec{b} \, \vec{c}] \] ### Step 6: Equate and solve for the determinant Now we have: \[ (x + y + z) [\vec{a} \, \vec{b} \, \vec{c}] = x + y + z \] Since \(x + y + z \neq 0\), we can divide both sides by \(x + y + z\): \[ [\vec{a} \, \vec{b} \, \vec{c}] = 1 \] ### Final Answer Thus, the value of the determinant \([ \vec{a} \, \vec{b} \, \vec{c} ]\) is: \[ \boxed{1} \]

To solve the problem, we need to find the determinant \([ \vec{a} \, \vec{b} \, \vec{c} ]\) given the equation: \[ \vec{r} = x (\vec{a} \times \vec{b}) + y (\vec{b} \times \vec{c}) + z (\vec{c} \times \vec{a}) \] and the condition: ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If vecV=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and vecV.(veca+vecb+vecc)=x+y+z. The valueof [veca vecb vecc] if x+y+z!=0 ils (A) 0 (B) 1 (C) -1 (D) 2

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=(1)/(3) , then x+y+z is equal to

If vec(alpha)=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=1/8 , then x+y+z=

If veca+2vecb+3vecc=0 , then vecaxxvecb+vecbxxvecc+veccxxveca=

If vecA=(vecbxxvecc)/([vecb vecc veca]), vecB=(veccxxveca)/([vecc veca vecb]), vecC=(vecaxxvecb)/([veca vecb vecc]) find [vecA vecB vecC]

If vecd=vecaxxvecb+vecbxxvecc+veccxxveca is a on zero vector and |(vecd.vecc)(vecaxxvecb)+(vecd.veca)(vecbxxvecc)+(vecd.vecb)(veccxxveca)|=0 then (A) |veca|+|vecb|+|vecc|=|vecd| (B) |veca|=|vecb|=|vecc| (C) veca,vecb,vecc are coplanar (D) veca+vecc=vec(2b)

veca, vecb,vecc are non-coplanar vectors and vecp,vecq,vecr are defined as vecp = (vecb xx vecc)/([vecb vecc veca]),q=(vecc xx veca)/([vecc veca vecb]), vecr =(veca xx vecb)/([veca vecb vecc]) then (veca + vecb).vecp+(vecb+vecc).vecq + (vecc + veca).vecr is equal to.

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecp+ vecq+vecr) is (a)3 (b)2 (c)1 (d)0

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) Such that x+y+z!=0...

    Text Solution

    |

  2. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca , vecb , vecc are three mutually perpendicular unit ve...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  17. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  18. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  19. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  20. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  21. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |