Home
Class 12
MATHS
If vec(alpha)=x(vecaxxvecb)+y(vecbxxvecc...

If `vec(alpha)=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca)` and `[veca vecb vecc]=1/8`, then `x+y+z=`

A

`8vec(alpha).(veca+vecb+vecc)`

B

`vec(alpha).(veca+vecb+vecc)`

C

`8(veca+vecb+vecc)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given expression for the vector \(\vec{\alpha}\): \[ \vec{\alpha} = x(\vec{a} \times \vec{b}) + y(\vec{b} \times \vec{c}) + z(\vec{c} \times \vec{a}) \] We also have the condition that: \[ [\vec{a}, \vec{b}, \vec{c}] = \frac{1}{8} \] This notation represents the scalar triple product, which can also be expressed as \(\vec{a} \cdot (\vec{b} \times \vec{c})\). ### Step 1: Take the dot product of \(\vec{\alpha}\) with \(\vec{a}\) We start by taking the dot product of \(\vec{\alpha}\) with \(\vec{a}\): \[ \vec{\alpha} \cdot \vec{a} = x(\vec{a} \cdot (\vec{a} \times \vec{b})) + y(\vec{a} \cdot (\vec{b} \times \vec{c})) + z(\vec{a} \cdot (\vec{c} \times \vec{a})) \] ### Step 2: Simplify the terms Using the properties of the dot and cross products: 1. \(\vec{a} \cdot (\vec{a} \times \vec{b}) = 0\) (since the dot product of a vector with a vector perpendicular to it is zero). 2. \(\vec{a} \cdot (\vec{c} \times \vec{a}) = 0\) (for the same reason). Thus, we simplify: \[ \vec{\alpha} \cdot \vec{a} = 0 + y(\vec{a} \cdot (\vec{b} \times \vec{c})) + 0 = y[\vec{a}, \vec{b}, \vec{c}] \] ### Step 3: Substitute the value of the scalar triple product Given that \([\vec{a}, \vec{b}, \vec{c}] = \frac{1}{8}\): \[ \vec{\alpha} \cdot \vec{a} = y \cdot \frac{1}{8} \] ### Step 4: Repeat for \(\vec{b}\) and \(\vec{c}\) Now, we take the dot product of \(\vec{\alpha}\) with \(\vec{b}\): \[ \vec{\alpha} \cdot \vec{b} = x(\vec{b} \cdot (\vec{a} \times \vec{b})) + y(\vec{b} \cdot (\vec{b} \times \vec{c})) + z(\vec{b} \cdot (\vec{c} \times \vec{a})) = 0 + 0 + z[\vec{a}, \vec{b}, \vec{c}] = z \cdot \frac{1}{8} \] Next, for \(\vec{c}\): \[ \vec{\alpha} \cdot \vec{c} = x(\vec{c} \cdot (\vec{a} \times \vec{b})) + y(\vec{c} \cdot (\vec{b} \times \vec{c})) + z(\vec{c} \cdot (\vec{c} \times \vec{a})) = x[\vec{a}, \vec{b}, \vec{c}] + 0 + 0 = x \cdot \frac{1}{8} \] ### Step 5: Express \(x\), \(y\), and \(z\) From the above equations, we can express \(x\), \(y\), and \(z\): \[ y = 8(\vec{\alpha} \cdot \vec{a}), \quad z = 8(\vec{\alpha} \cdot \vec{b}), \quad x = 8(\vec{\alpha} \cdot \vec{c}) \] ### Step 6: Add \(x\), \(y\), and \(z\) Now, we can find \(x + y + z\): \[ x + y + z = 8(\vec{\alpha} \cdot \vec{c}) + 8(\vec{\alpha} \cdot \vec{b}) + 8(\vec{\alpha} \cdot \vec{a}) = 8(\vec{\alpha} \cdot (\vec{a} + \vec{b} + \vec{c})) \] ### Final Result Thus, the final answer is: \[ x + y + z = 8(\vec{\alpha} \cdot (\vec{a} + \vec{b} + \vec{c})) \]

To solve the problem, we start with the given expression for the vector \(\vec{\alpha}\): \[ \vec{\alpha} = x(\vec{a} \times \vec{b}) + y(\vec{b} \times \vec{c}) + z(\vec{c} \times \vec{a}) \] We also have the condition that: ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=(1)/(3) , then x+y+z is equal to

If veca,vecb,vecc are mutually perpendicular vector and veca=alpha(vecaxxvecb)+beta(vecbxxvecc)+gamma(veccxxveca) and [veca vecb vecc]=1 then vecalpha+vecbeta+vecgamma= (A) |veca|^2 (B) -|veca|^2 (C) 0 (D) none of these

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that: [vecaxxvecb vecb xx vecc veccxxveca]=[vecavecbvecc]^2

If vecV=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and vecV.(veca+vecb+vecc)=x+y+z. The valueof [veca vecb vecc] if x+y+z!=0 ils (A) 0 (B) 1 (C) -1 (D) 2

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) Such that x+y+z!=0 and vecr.(veca+vecb+vecc)=x+y+z , then [veca vecb vecc]=

If vecaxx(vecbxxvecc)=vecbxx(veccxxveca) and [(vec, vecb, vecc)]!=0 then vecaxx(vecbxxvecc) is equal to

If vecd=lambda(vecaxxvecb)+mu(vecbxxvecc)+t(veccxxveca).[veca,vecbvecc]=(1)/(8) and vecd.(veca+vecb+vecc)=8 then lambda+mu+t equals …………

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If vec(alpha)=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb...

    Text Solution

    |

  2. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca , vecb , vecc are three mutually perpendicular unit ve...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  17. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  18. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  19. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  20. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  21. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |