Home
Class 12
MATHS
Let veca=hati-hatk, vecb=xhati+hatj+(1-x...

Let `veca=hati-hatk, vecb=xhati+hatj+(1-x)hatk` and `vecc=yhati+xhatj+(1+x-y)hatk`, then `[veca vecb vecc]` depends on

A

neither `x` nor `y`

B

both `x` and `y`

C

only `x`

D

only `y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) given as: \[ \vec{a} = \hat{i} - \hat{k} \] \[ \vec{b} = x\hat{i} + \hat{j} + (1 - x)\hat{k} \] \[ \vec{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k} \] ### Step 1: Write the vectors in matrix form We will represent the vectors as a matrix where each row corresponds to the coefficients of \(\hat{i}\), \(\hat{j}\), and \(\hat{k}\): \[ \begin{vmatrix} 1 & 0 & -1 \\ x & 1 & 1 - x \\ y & x & 1 + x - y \end{vmatrix} \] ### Step 2: Simplify the determinant We can simplify the determinant by performing row operations. We will add the first row to the third row: \[ \begin{vmatrix} 1 & 0 & -1 \\ x & 1 & 1 - x \\ y + 1 & x & 0 \end{vmatrix} \] ### Step 3: Calculate the determinant Now, we can calculate the determinant using the formula for a \(3 \times 3\) matrix: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix, we have: \[ D = 1 \cdot (1 \cdot 0 - (1 - x) \cdot x) - 0 + (-1) \cdot (x \cdot (y + 1) - 1 \cdot y) \] Calculating the terms: 1. The first term simplifies to: \[ 1 \cdot (0 - (1 - x)x) = - (1 - x)x = -x + x^2 \] 2. The second term is zero since it is multiplied by zero. 3. The third term simplifies to: \[ -1 \cdot (xy + x - y) = -xy - x + y \] Putting it all together: \[ D = -x + x^2 - xy - x + y \] \[ D = x^2 - xy - 2x + y \] ### Step 4: Analyze the dependency Now, we need to determine if the determinant \(D\) depends on \(x\) and \(y\). The expression \(D = x^2 - xy - 2x + y\) is a polynomial in \(x\) and \(y\). Since it contains terms involving both \(x\) and \(y\), it indicates that the determinant does depend on these variables. ### Conclusion The determinant \([ \vec{a} \, \vec{b} \, \vec{c} ]\) depends on \(x\) and \(y\).

To solve the problem, we need to find the determinant of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) given as: \[ \vec{a} = \hat{i} - \hat{k} \] \[ \vec{b} = x\hat{i} + \hat{j} + (1 - x)\hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

Let veca=hati+hatj+hatk, vecb=hati-hatj+hat2k and vecc=xhati+(x-2)hatj-hatk . If the vector vecc lies in the plane of veca and vecb then x equals

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc= zhati + xhatj+ yhatk , " then " vecaxx (vecbxx vecc) is (a)parallel to ( y- z) hati + (z - x) hatj + (x -y) hatk (b)orthogonal to hati + hatj + hatk (c)orthogonal to ( y+z) hati + ( z + x) hatj + ( x + y) hatk (d)orthogonal to xhati + yhatj + zhatk

Let veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the pland of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

Let veca=2hati+hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the plane of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. Let veca=hati-hatk, vecb=xhati+hatj+(1-x)hatk and vecc=yhati+xhatj+(1+...

    Text Solution

    |

  2. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca , vecb , vecc are three mutually perpendicular unit ve...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  17. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  18. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  19. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  20. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  21. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |