Home
Class 12
MATHS
The points with position vectors alpha h...

The points with position vectors `alpha hati+hatj+hatk, hati-hatj-hatk, hati+2hatj-hatk, hati+hatj+betahatk` are coplanar if

A

`(1-alpha)(1+beta)=0`

B

`(1-alpha)(1-beta)=0`

C

`(1+alpha)(1+beta)=0`

D

`(1+alpha)(1-beta)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the condition for the points with position vectors \( \alpha \hat{i} + \hat{j} + \hat{k}, \hat{i} - \hat{j} - \hat{k}, \hat{i} + 2\hat{j} - \hat{k}, \hat{i} + \hat{j} + \beta \hat{k} \) to be coplanar, we can follow these steps: ### Step 1: Identify the Position Vectors Let: - \( A = \alpha \hat{i} + \hat{j} + \hat{k} \) - \( B = \hat{i} - \hat{j} - \hat{k} \) - \( C = \hat{i} + 2\hat{j} - \hat{k} \) - \( D = \hat{i} + \hat{j} + \beta \hat{k} \) ### Step 2: Find the Vectors from One Point to Others We can choose point \( B \) as a reference point and find the vectors \( \overrightarrow{BA}, \overrightarrow{BC}, \overrightarrow{BD} \): - \( \overrightarrow{BA} = A - B = (\alpha - 1) \hat{i} + (1 + 1) \hat{j} + (1 + 1) \hat{k} = (\alpha - 1) \hat{i} + 2 \hat{j} + 2 \hat{k} \) - \( \overrightarrow{BC} = C - B = (1 - 1) \hat{i} + (2 + 1) \hat{j} + (-1 + 1) \hat{k} = 0 \hat{i} + 3 \hat{j} + 0 \hat{k} = 0 \hat{i} + 3 \hat{j} \) - \( \overrightarrow{BD} = D - B = (1 - 1) \hat{i} + (1 + 1) \hat{j} + (\beta + 1) \hat{k} = 0 \hat{i} + 2 \hat{j} + (\beta + 1) \hat{k} \) ### Step 3: Set Up the Determinant for Coplanarity The points are coplanar if the scalar triple product of the vectors \( \overrightarrow{BA}, \overrightarrow{BC}, \overrightarrow{BD} \) is zero. This can be represented as a determinant: \[ \begin{vmatrix} \alpha - 1 & 2 & 2 \\ 0 & 3 & 0 \\ 0 & 2 & \beta + 1 \end{vmatrix} = 0 \] ### Step 4: Calculate the Determinant Calculating the determinant: \[ = (\alpha - 1) \begin{vmatrix} 3 & 0 \\ 2 & \beta + 1 \end{vmatrix} - 2 \begin{vmatrix} 0 & 0 \\ 0 & \beta + 1 \end{vmatrix} + 2 \begin{vmatrix} 0 & 3 \\ 0 & 2 \end{vmatrix} \] Calculating the first determinant: \[ = (\alpha - 1)(3(\beta + 1) - 0) = 3(\alpha - 1)(\beta + 1) \] The other two determinants are zero, so we have: \[ 3(\alpha - 1)(\beta + 1) = 0 \] ### Step 5: Solve for Conditions From the equation \( 3(\alpha - 1)(\beta + 1) = 0 \), we can conclude: - \( \alpha - 1 = 0 \) or \( \beta + 1 = 0 \) - Thus, \( \alpha = 1 \) or \( \beta = -1 \) ### Final Condition The points are coplanar if: \[ (\alpha - 1)(\beta + 1) = 0 \]

To determine the condition for the points with position vectors \( \alpha \hat{i} + \hat{j} + \hat{k}, \hat{i} - \hat{j} - \hat{k}, \hat{i} + 2\hat{j} - \hat{k}, \hat{i} + \hat{j} + \beta \hat{k} \) to be coplanar, we can follow these steps: ### Step 1: Identify the Position Vectors Let: - \( A = \alpha \hat{i} + \hat{j} + \hat{k} \) - \( B = \hat{i} - \hat{j} - \hat{k} \) - \( C = \hat{i} + 2\hat{j} - \hat{k} \) - \( D = \hat{i} + \hat{j} + \beta \hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If the four points with position vectors -2hati+hatj+hatk, hati+hatj+hatk, hatj-hatk and lamda hatj+hatk are coplanar then lamda= (A) 1 (B) 2/3 (C) -1 (D) 0

Find the value of lambda for which the four points with position vectors 6hati-7hatj, 16hati-19hatj, lambdahatj-6hatk and 2hati-5hatj+10hatk are coplanar.

The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:

If the points whose position vectors are 2hati + hatj + hatk , 6hati - hatj + 2 hatk and 14 hati - 5 hatj + p hatk are collinear, then p =

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

Prove that four points position vectors 6hati-7hatj,16hati-19 hatj-4hatk,3hatj-6hatk and 2hati + 5hatj+ 10hatk are not coplanar.

Show that the four points A,B,C and D with position vectors 4hati+5hatj+hatk, -hatj-hatk, 3hati+9hatj+4hatk and 4(-hati+hatj+hatk) respectively, are coplanar.

Find the value of lambda , if four points with position vectors 3 hati + 6 hatj + 9 hatk, hati + 2 hatj + 3 hatk, 2 hati + 3 hatj + hatk and 4 hati + 6 hatj + lambdahat k are coplanar.

The point having position vectors 2hati+3hatj+4hatk,3hati+4hatj+2hatk and 4hati+2hatj+3hatk are the vertices of

Prove that the three points whose positions vectors are 3hati-hatj+2hatk, hati-hatj-3hatk and 4hati-3hatj+hatk form an isosceles tirangle.

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. The points with position vectors alpha hati+hatj+hatk, hati-hatj-hatk,...

    Text Solution

    |

  2. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca , vecb , vecc are three mutually perpendicular unit ve...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  17. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  18. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  19. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  20. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  21. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |