Home
Class 12
MATHS
The vectors veca=xhati+(x+1)hatj+(x+2)...

The vectors
`veca=xhati+(x+1)hatj+(x+2)hatk`,
`vecb=(x+3)hati+(x+4)hatj+(x+5)hatk`
and `vecc=(x+6)hati+(x+7)hatj+(x+8)hatk` are coplanar for

A

all values of `x`

B

`x lt 0` only

C

`x gt0` only

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( x \) for which the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are coplanar, we can use the scalar triple product. The vectors are given as follows: \[ \vec{a} = x \hat{i} + (x + 1) \hat{j} + (x + 2) \hat{k} \] \[ \vec{b} = (x + 3) \hat{i} + (x + 4) \hat{j} + (x + 5) \hat{k} \] \[ \vec{c} = (x + 6) \hat{i} + (x + 7) \hat{j} + (x + 8) \hat{k} \] ### Step 1: Set up the determinant for the scalar triple product The vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are coplanar if the scalar triple product is zero, which can be represented as the determinant of the matrix formed by the coefficients of the vectors: \[ \begin{vmatrix} x & x + 1 & x + 2 \\ x + 3 & x + 4 & x + 5 \\ x + 6 & x + 7 & x + 8 \end{vmatrix} = 0 \] ### Step 2: Calculate the determinant We can expand the determinant: \[ D = \begin{vmatrix} x & x + 1 & x + 2 \\ x + 3 & x + 4 & x + 5 \\ x + 6 & x + 7 & x + 8 \end{vmatrix} \] Using the determinant formula for a 3x3 matrix: \[ D = x \begin{vmatrix} x + 4 & x + 5 \\ x + 7 & x + 8 \end{vmatrix} - (x + 1) \begin{vmatrix} x + 3 & x + 5 \\ x + 6 & x + 8 \end{vmatrix} + (x + 2) \begin{vmatrix} x + 3 & x + 4 \\ x + 6 & x + 7 \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants Calculating each of the 2x2 determinants: 1. For the first determinant: \[ \begin{vmatrix} x + 4 & x + 5 \\ x + 7 & x + 8 \end{vmatrix} = (x + 4)(x + 8) - (x + 5)(x + 7) = x^2 + 12x + 32 - (x^2 + 12x + 35) = -3 \] 2. For the second determinant: \[ \begin{vmatrix} x + 3 & x + 5 \\ x + 6 & x + 8 \end{vmatrix} = (x + 3)(x + 8) - (x + 5)(x + 6) = x^2 + 11x + 24 - (x^2 + 11x + 30) = -6 \] 3. For the third determinant: \[ \begin{vmatrix} x + 3 & x + 4 \\ x + 6 & x + 7 \end{vmatrix} = (x + 3)(x + 7) - (x + 4)(x + 6) = x^2 + 10x + 21 - (x^2 + 10x + 24) = -3 \] ### Step 4: Substitute back into the determinant equation Now substituting back into the determinant equation: \[ D = x(-3) - (x + 1)(-6) + (x + 2)(-3) \] Expanding this: \[ D = -3x + 6(x + 1) - 3(x + 2) \] \[ = -3x + 6x + 6 - 3x - 6 \] \[ = 0 \] ### Step 5: Conclusion Since \(D = 0\) for all values of \(x\), we conclude that the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are coplanar for all values of \(x\). ### Final Answer The vectors are coplanar for all values of \(x\). ---

To determine the values of \( x \) for which the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are coplanar, we can use the scalar triple product. The vectors are given as follows: \[ \vec{a} = x \hat{i} + (x + 1) \hat{j} + (x + 2) \hat{k} \] \[ \vec{b} = (x + 3) \hat{i} + (x + 4) \hat{j} + (x + 5) \hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

The vectors x hati + (x+1)hatj + (x+2)hatk, (x+3)hati+ (x+4)hatj + (x+5)hatk and (x+6)hati + (x+7)hatj+ (x+8)hatk are coplanar if x is equal to a. 1 b. -3 c. 4 d. 0

The vectors x hati + (x+1)hatj + (x+2)hatk, (x+3)hati+ (x+4)hatj + (x+5)hatk and (x+6)hati + (x+7)hatj+ (x+8)hatk are coplanar if x is equal to

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of lamda .

The vectors are given below veca = hati + 2hatj +3hatk vecb = 2hati + 4hatj + 6hatk and vecc = 3hati + 6hatj + 9 hatk find the components of the vector veca + vecb -vecc

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of (lamda -4) .

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk . Let veca_(1) be the projection of veca on vecb and veca_(2) be the projection of veca_(1) on vecc . Then veca_(1).vecb is equal to

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk . Let veca_(1) be the projection of veca on vecb and veca_(2) be the projection of veca_(1) on vecc . Then veca_(2) is equal to

Find the scalar product of vectors veca=2hati-hatj+2hatk and vecb=hati-3hatj-5hatk

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. The vectors veca=xhati+(x+1)hatj+(x+2)hatk, vecb=(x+3)hati+(x+4)ha...

    Text Solution

    |

  2. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca , vecb , vecc are three mutually perpendicular unit ve...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  17. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  18. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  19. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  20. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  21. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |