Home
Class 12
MATHS
The number of distinct real values of la...

The number of distinct real values of `lamda`, for which the vectors `-lamda^(2)hati+hatj+hatk, hati-lamda^(2)hatj+hatk` and `hati+hatj-lamda^(2)hatk` are coplanar, is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of distinct real values of \( \lambda \) for which the vectors \( \mathbf{A} = -\lambda^2 \hat{i} + \hat{j} + \hat{k} \), \( \mathbf{B} = \hat{i} - \lambda^2 \hat{j} + \hat{k} \), and \( \mathbf{C} = \hat{i} + \hat{j} - \lambda^2 \hat{k} \) are coplanar, we need to calculate the scalar triple product of these vectors and set it equal to zero. ### Step 1: Write the vectors in component form The vectors can be expressed as: \[ \mathbf{A} = (-\lambda^2, 1, 1), \quad \mathbf{B} = (1, -\lambda^2, 1), \quad \mathbf{C} = (1, 1, -\lambda^2) \] ### Step 2: Set up the scalar triple product The scalar triple product \( \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) \) can be calculated using the determinant of a matrix formed by these vectors: \[ \text{Det} = \begin{vmatrix} -\lambda^2 & 1 & 1 \\ 1 & -\lambda^2 & 1 \\ 1 & 1 & -\lambda^2 \end{vmatrix} \] ### Step 3: Calculate the determinant We can expand this determinant: \[ \text{Det} = -\lambda^2 \begin{vmatrix} -\lambda^2 & 1 \\ 1 & -\lambda^2 \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & -\lambda^2 \end{vmatrix} + 1 \begin{vmatrix} 1 & -\lambda^2 \\ 1 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} -\lambda^2 & 1 \\ 1 & -\lambda^2 \end{vmatrix} = \lambda^4 - 1 \) 2. \( \begin{vmatrix} 1 & 1 \\ 1 & -\lambda^2 \end{vmatrix} = -\lambda^2 - 1 \) 3. \( \begin{vmatrix} 1 & -\lambda^2 \\ 1 & 1 \end{vmatrix} = 1 + \lambda^2 \) Substituting back into the determinant: \[ \text{Det} = -\lambda^2 (\lambda^4 - 1) + (\lambda^2 + 1) + (1 + \lambda^2) \] \[ = -\lambda^6 + \lambda^2 + 1 + 1 + \lambda^2 \] \[ = -\lambda^6 + 3\lambda^2 + 2 \] ### Step 4: Set the determinant to zero To find the values of \( \lambda \) for which the vectors are coplanar, we set the determinant to zero: \[ -\lambda^6 + 3\lambda^2 + 2 = 0 \] Multiplying through by -1 gives: \[ \lambda^6 - 3\lambda^2 - 2 = 0 \] ### Step 5: Substitute \( x = \lambda^2 \) Let \( x = \lambda^2 \). The equation becomes: \[ x^3 - 3x - 2 = 0 \] ### Step 6: Solve the cubic equation We can use the Rational Root Theorem to test possible rational roots. Testing \( x = 2 \): \[ 2^3 - 3(2) - 2 = 8 - 6 - 2 = 0 \] So, \( x = 2 \) is a root. We can factor the cubic as: \[ (x - 2)(x^2 + 2x + 1) = 0 \] The quadratic factors as: \[ (x - 2)(x + 1)^2 = 0 \] ### Step 7: Find the values of \( x \) The solutions are: 1. \( x - 2 = 0 \) gives \( x = 2 \) (which means \( \lambda^2 = 2 \) leading to \( \lambda = \pm \sqrt{2} \)) 2. \( (x + 1)^2 = 0 \) gives \( x = -1 \) (which does not yield real \( \lambda \)) ### Step 8: Count distinct real values of \( \lambda \) From \( x = 2 \), we have two distinct real values of \( \lambda \): 1. \( \lambda = \sqrt{2} \) 2. \( \lambda = -\sqrt{2} \) Thus, the number of distinct real values of \( \lambda \) is **2**. ### Final Answer The number of distinct real values of \( \lambda \) is \( \boxed{2} \).

To find the number of distinct real values of \( \lambda \) for which the vectors \( \mathbf{A} = -\lambda^2 \hat{i} + \hat{j} + \hat{k} \), \( \mathbf{B} = \hat{i} - \lambda^2 \hat{j} + \hat{k} \), and \( \mathbf{C} = \hat{i} + \hat{j} - \lambda^2 \hat{k} \) are coplanar, we need to calculate the scalar triple product of these vectors and set it equal to zero. ### Step 1: Write the vectors in component form The vectors can be expressed as: \[ \mathbf{A} = (-\lambda^2, 1, 1), \quad \mathbf{B} = (1, -\lambda^2, 1), \quad \mathbf{C} = (1, 1, -\lambda^2) \] ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

The number of distinct values of lamda , for which the vectors -lamda^(2)hati+hatj+hatk, hati-lamda^(2)hatj+hatk and hati+hatj-lamda^(2)hatk are coplanar, is

The number of distinct real values of lamda for which the vectors veca=lamda^(3)hati+hatk, vecb=hati-lamda^(3)hatj and vecc=hati+(2lamda-sin lamda)hatj-lamdahatk are coplanar is

The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:

The sum of the distinct real values of mu , for which the vectors, mu hati + hatj + hatk, hati + mu hatj + hatk, hati + hatj + muhatk are coplanar, is

The number of real values of a for which the vectors hati+2hatj+hatk, ahati+hatj+2hatk and hati+2hatj+ahatk are coplanar is

The value of lamda for which the vectors 3hati-6hatj+hatkand2hati-4hatj+lamdahatk parallel, is

The value of lamda for which the four points 2hati+3hatj-hatk,hati+2hatj+3hatk,3hati+4hatj-2hatk and hati-lamdahatj+6hatk are coplanar.

For what values of lamda are the vectors lamdahati+2hatj+hatk,3hati+2hatj,lamda i+j are coplanar.

Find the value of lamda so that the two vectors 2hati+3hatj-hatk and -4hati-6hatj+lamda hatk are parallel

The points with position vectors alpha hati+hatj+hatk, hati-hatj-hatk, hati+2hatj-hatk, hati+hatj+betahatk are coplanar if

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. The number of distinct real values of lamda, for which the vectors -la...

    Text Solution

    |

  2. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca , vecb , vecc are three mutually perpendicular unit ve...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  17. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  18. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  19. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  20. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  21. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |