Home
Class 12
MATHS
If veca, vecb and vecc are unit coplanar...

If `veca, vecb` and `vecc` are unit coplanar vectors, then
`[(2veca-3vecb,7vecb-9vecc,12vecc-23veca)]`

A

0

B

`1/2`

C

`24`

D

`32`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given by the determinant of three vectors formed from the unit coplanar vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). Let's break it down step by step. ### Step 1: Understand the properties of the vectors Given that \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are unit coplanar vectors, we know: - \(|\vec{a}| = |\vec{b}| = |\vec{c}| = 1\) (they are unit vectors) - The vectors are coplanar, which implies that the scalar triple product \(\vec{a} \cdot (\vec{b} \times \vec{c}) = 0\). ### Step 2: Set up the determinant We need to evaluate the determinant formed by the vectors: \[ \begin{vmatrix} 2\vec{a} - 3\vec{b} \\ 7\vec{b} - 9\vec{c} \\ 12\vec{c} - 23\vec{a} \end{vmatrix} \] This can be represented in determinant form as: \[ \begin{vmatrix} 2 & -3 & 0 \\ 0 & 7 & -9 \\ -23 & 0 & 12 \end{vmatrix} \] ### Step 3: Calculate the determinant To calculate the determinant, we can use the formula for a \(3 \times 3\) determinant: \[ \text{Det} = a(ei-fh) - b(di-fg) + c(dh-eg) \] Where the matrix is: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix: - \(a = 2\), \(b = -3\), \(c = 0\) - \(d = 0\), \(e = 7\), \(f = -9\) - \(g = -23\), \(h = 0\), \(i = 12\) Calculating the determinant: \[ \text{Det} = 2(7 \cdot 12 - (-9) \cdot 0) - (-3)(0 \cdot 12 - (-9)(-23)) + 0(0 \cdot 0 - 7 \cdot (-23)) \] \[ = 2(84) + 3(207) + 0 \] \[ = 168 + 621 \] \[ = 789 \] ### Step 4: Consider the coplanarity condition However, since \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are coplanar, the determinant of any linear combination of these vectors should also equal zero. Therefore, the value of the determinant we calculated must be adjusted based on the coplanarity condition. ### Conclusion Thus, the value of the expression is: \[ \boxed{0} \]

To solve the problem, we need to evaluate the expression given by the determinant of three vectors formed from the unit coplanar vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). Let's break it down step by step. ### Step 1: Understand the properties of the vectors Given that \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are unit coplanar vectors, we know: - \(|\vec{a}| = |\vec{b}| = |\vec{c}| = 1\) (they are unit vectors) - The vectors are coplanar, which implies that the scalar triple product \(\vec{a} \cdot (\vec{b} \times \vec{c}) = 0\). ### Step 2: Set up the determinant ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb and vecc are non-coplanar vectors, prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc are coplanar.

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca,vecb,vecc are non coplanar vectors then ([veca+2vecb vecb+2cvecc vecc+2veca])/([veca vecb vecc])= (A) 3 (B) 9 (C) 8 (D) 6

If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)=9 " then find the value of " |2veca+ 5vecb+ 5vecc|

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

If veca,vecb,vecc are coplanar vectors , then show that |{:(veca,vecb,vecc),(veca*veca,veca*vecb,veca*vecc),(vecb*veca,vecb*vecb,vecb*vecc):}|=vec0

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,...

    Text Solution

    |

  2. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca , vecb , vecc are three mutually perpendicular unit ve...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  17. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  18. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  19. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  20. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  21. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |