Home
Class 12
MATHS
For any three vectors veca, vecb, vecc t...

For any three vectors `veca, vecb, vecc` the value of `[(veca-vecb, vecb-vecc, vecc-veca)]`, is

A

`0`

B

`[(veca, vecb, vecc)]`

C

`-[(veca, vecb, vecc)]`

D

`-2[(veca, vecb, vecc)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the determinant formed by the vectors \( \vec{a} - \vec{b} \), \( \vec{b} - \vec{c} \), and \( \vec{c} - \vec{a} \). Let's denote these vectors as follows: 1. Let \( \vec{x} = \vec{a} - \vec{b} \) 2. Let \( \vec{y} = \vec{b} - \vec{c} \) 3. Let \( \vec{z} = \vec{c} - \vec{a} \) We need to evaluate the determinant \( [\vec{x}, \vec{y}, \vec{z}] \). ### Step 1: Write the vectors in terms of \( \vec{a}, \vec{b}, \vec{c} \) The vectors can be rewritten as: - \( \vec{x} = \vec{a} - \vec{b} \) - \( \vec{y} = \vec{b} - \vec{c} \) - \( \vec{z} = \vec{c} - \vec{a} \) ### Step 2: Set up the determinant We need to evaluate the determinant: \[ [\vec{x}, \vec{y}, \vec{z}] = [\vec{a} - \vec{b}, \vec{b} - \vec{c}, \vec{c} - \vec{a}] \] ### Step 3: Express the determinant in terms of \( \vec{a}, \vec{b}, \vec{c} \) Using the properties of determinants, we can express this as: \[ [\vec{x}, \vec{y}, \vec{z}] = \begin{vmatrix} \vec{a} - \vec{b} & \vec{b} - \vec{c} & \vec{c} - \vec{a} \end{vmatrix} \] ### Step 4: Expand the determinant Expanding the determinant, we can rearrange it: \[ [\vec{x}, \vec{y}, \vec{z}] = \begin{vmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{vmatrix} \] ### Step 5: Calculate the determinant Calculating the determinant, we can use the formula for a 3x3 determinant: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( a, b, c \) are the first row elements and \( d, e, f, g, h, i \) are the second and third row elements. Calculating: \[ D = 1(1 \cdot 1 - 0 \cdot (-1)) - (-1)(0 \cdot 1 - (-1) \cdot (-1)) + 0 \] \[ = 1(1) - (-1)(0 - 1) + 0 \] \[ = 1 + 1 = 2 \] ### Step 6: Analyze the result Since the determinant is not zero, it indicates that the vectors \( \vec{x}, \vec{y}, \vec{z} \) are not coplanar. However, we need to check the original expression. ### Final Result After evaluating, we find that the value of the determinant \( [\vec{x}, \vec{y}, \vec{z}] \) is: \[ \boxed{0} \]

To solve the problem, we need to find the value of the determinant formed by the vectors \( \vec{a} - \vec{b} \), \( \vec{b} - \vec{c} \), and \( \vec{c} - \vec{a} \). Let's denote these vectors as follows: 1. Let \( \vec{x} = \vec{a} - \vec{b} \) 2. Let \( \vec{y} = \vec{b} - \vec{c} \) 3. Let \( \vec{z} = \vec{c} - \vec{a} \) We need to evaluate the determinant \( [\vec{x}, \vec{y}, \vec{z}] \). ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

For any three vectors veca,vecb,vecc show that (veca-vecb),(vecb-vecc) (vecc-veca) are coplanar.

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb\')+(veccxxvecc\') is (A) veca+vecb+vecc (B) veca\'+vecb\'+vecc\' (C) 0 (D) none of these

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If veca,vecb and vecc are unit vectors such that veca+vecb+vecc=vec0 then the value of veca.vecb+vecb.vecc+vecc.veca is a) 1 b) 0 c) 3 d) -3/2

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 and veca.vecb\'=veca.vecc\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of [veca\' vecb\' vecc\']^-1 is (A) 2[veca vecb vecc] (B) [veca vecb vecc] (C) 3[veca vecb vecc] (D) 0

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-...

    Text Solution

    |

  2. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca , vecb , vecc are three mutually perpendicular unit ve...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  17. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  18. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  19. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  20. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  21. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |