Home
Class 12
MATHS
If veca, vecb, vecc are three non-coplan...

If `veca, vecb, vecc` are three non-coplanar vetors represented by non-current edges of a parallelopiped of volume 4 units, then the value of
`(veca+vecb).(vecbxxvecc)+(vecb+vecc).(veccxxveca)+(vecc+veca).(vecaxxvecb)`, is

A

12

B

4

C

`+-12`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} + \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} + \vec{a}) \cdot (\vec{a} \times \vec{b}) \] Given that the volume of the parallelepiped formed by the vectors \(\vec{a}, \vec{b}, \vec{c}\) is 4 units, we can relate this to the scalar triple product: \[ V = |\vec{a} \cdot (\vec{b} \times \vec{c})| = 4 \] ### Step 1: Break down the expression We can expand each term in the expression: 1. \((\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c}) = \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{b} \times \vec{c})\) 2. \((\vec{b} + \vec{c}) \cdot (\vec{c} \times \vec{a}) = \vec{b} \cdot (\vec{c} \times \vec{a}) + \vec{c} \cdot (\vec{c} \times \vec{a})\) 3. \((\vec{c} + \vec{a}) \cdot (\vec{a} \times \vec{b}) = \vec{c} \cdot (\vec{a} \times \vec{b}) + \vec{a} \cdot (\vec{a} \times \vec{b})\) ### Step 2: Identify zero terms Using the property of the dot product, we know that: - \(\vec{b} \cdot (\vec{b} \times \vec{c}) = 0\) (a vector dotted with a cross product involving itself is zero) - \(\vec{c} \cdot (\vec{c} \times \vec{a}) = 0\) - \(\vec{a} \cdot (\vec{a} \times \vec{b}) = 0\) Thus, the expression simplifies to: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{c} \times \vec{a}) + \vec{c} \cdot (\vec{a} \times \vec{b}) \] ### Step 3: Use the scalar triple product The remaining terms can be expressed using the scalar triple product: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = V \] \[ \vec{b} \cdot (\vec{c} \times \vec{a}) = V \] \[ \vec{c} \cdot (\vec{a} \times \vec{b}) = V \] Thus, we have: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{c} \times \vec{a}) + \vec{c} \cdot (\vec{a} \times \vec{b}) = V + V + V = 3V \] ### Step 4: Substitute the volume Since the volume \(V\) is given as 4 units, we substitute: \[ 3V = 3 \times 4 = 12 \] ### Conclusion The value of the expression is: \[ \boxed{12} \]

To solve the problem, we need to evaluate the expression: \[ (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} + \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} + \vec{a}) \cdot (\vec{a} \times \vec{b}) \] Given that the volume of the parallelepiped formed by the vectors \(\vec{a}, \vec{b}, \vec{c}\) is 4 units, we can relate this to the scalar triple product: ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

For three vectors veca+vecb+vecc=0 , check if (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

If [veca vecb vecc]=1 then value of (veca.vecbxxvecc)/(veccxxveca.vecb)+(vecb.veccxxveca)/(vecaxxvecb.vecc)+(vecc.vecaxxvecb)/(vecbxxvecc.veca) is

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

If veca, vecb and vecc are three non-coplanar vectors, then find the value of (veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))

If a ,ba n dc are three non-cop0lanar vector, non-zero vectors then the value of ( veca . veca ) vecb × vecc +( veca . vecb ) vecc × veca +( veca . vecc ) veca × vecb .

Express veca,vecb,vecc in terms of vecbxxvecc, veccxxveca and vecaxxvecb .

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If veca, vecb, vecc are three non-coplanar vetors represented by non-c...

    Text Solution

    |

  2. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca , vecb , vecc are three mutually perpendicular unit ve...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  17. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  18. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  19. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  20. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  21. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |