Home
Class 12
MATHS
The volume of the tetrahedron whose vert...

The volume of the tetrahedron whose vertices are the points `hati, hati+hatj, hati+hatj+hatk` and `2hati+3hatj+lamdahatk` is `1//6` units,
Then the values of `lamda`

A

does not exist

B

is 7

C

is -1

D

is any real value

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) such that the volume of the tetrahedron with vertices at the points \( \mathbf{a} = \hat{i} \), \( \mathbf{b} = \hat{i} + \hat{j} \), \( \mathbf{c} = \hat{i} + \hat{j} + \hat{k} \), and \( \mathbf{d} = 2\hat{i} + 3\hat{j} + \lambda \hat{k} \) is \( \frac{1}{6} \) units, we can follow these steps: ### Step 1: Identify the vectors We define the vertices as: - \( \mathbf{a} = \hat{i} \) - \( \mathbf{b} = \hat{i} + \hat{j} \) - \( \mathbf{c} = \hat{i} + \hat{j} + \hat{k} \) - \( \mathbf{d} = 2\hat{i} + 3\hat{j} + \lambda \hat{k} \) ### Step 2: Calculate the vectors \( \mathbf{AB} \), \( \mathbf{AC} \), and \( \mathbf{AD} \) - \( \mathbf{AB} = \mathbf{b} - \mathbf{a} = (\hat{i} + \hat{j}) - \hat{i} = \hat{j} \) - \( \mathbf{AC} = \mathbf{c} - \mathbf{a} = (\hat{i} + \hat{j} + \hat{k}) - \hat{i} = \hat{j} + \hat{k} \) - \( \mathbf{AD} = \mathbf{d} - \mathbf{a} = (2\hat{i} + 3\hat{j} + \lambda \hat{k}) - \hat{i} = \hat{i} + 3\hat{j} + \lambda \hat{k} \) ### Step 3: Set up the scalar triple product The volume \( V \) of the tetrahedron can be expressed as: \[ V = \frac{1}{6} |\mathbf{AB} \cdot (\mathbf{AC} \times \mathbf{AD})| \] Given that the volume is \( \frac{1}{6} \), we have: \[ |\mathbf{AB} \cdot (\mathbf{AC} \times \mathbf{AD})| = 1 \] ### Step 4: Compute the cross product \( \mathbf{AC} \times \mathbf{AD} \) We can represent the vectors in component form: - \( \mathbf{AB} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \) - \( \mathbf{AC} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \) - \( \mathbf{AD} = \begin{pmatrix} 1 \\ 3 \\ \lambda \end{pmatrix} \) Now, we calculate the cross product \( \mathbf{AC} \times \mathbf{AD} \): \[ \mathbf{AC} \times \mathbf{AD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & 1 \\ 1 & 3 & \lambda \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 1 & 1 \\ 3 & \lambda \end{vmatrix} - \hat{j} \begin{vmatrix} 0 & 1 \\ 1 & \lambda \end{vmatrix} + \hat{k} \begin{vmatrix} 0 & 1 \\ 1 & 3 \end{vmatrix} \] Calculating each of these determinants: - For \( \hat{i} \): \( 1 \cdot \lambda - 1 \cdot 3 = \lambda - 3 \) - For \( \hat{j} \): \( 0 \cdot \lambda - 1 \cdot 1 = -1 \) - For \( \hat{k} \): \( 0 \cdot 3 - 1 \cdot 1 = -1 \) Thus, we have: \[ \mathbf{AC} \times \mathbf{AD} = (\lambda - 3)\hat{i} + 1\hat{j} - 1\hat{k} \] ### Step 5: Calculate the dot product \( \mathbf{AB} \cdot (\mathbf{AC} \times \mathbf{AD}) \) Now, we compute: \[ \mathbf{AB} \cdot (\mathbf{AC} \times \mathbf{AD}) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} \lambda - 3 \\ 1 \\ -1 \end{pmatrix} = 0 \cdot (\lambda - 3) + 1 \cdot 1 + 0 \cdot (-1) = 1 \] ### Step 6: Set the equation equal to 1 Since we have: \[ |\mathbf{AB} \cdot (\mathbf{AC} \times \mathbf{AD})| = 1 \] This is already satisfied, and we find that the equation holds true regardless of the value of \( \lambda \). ### Conclusion Since the equation holds for any value of \( \lambda \), we conclude that: \[ \lambda \in \mathbb{R} \]

To find the value of \( \lambda \) such that the volume of the tetrahedron with vertices at the points \( \mathbf{a} = \hat{i} \), \( \mathbf{b} = \hat{i} + \hat{j} \), \( \mathbf{c} = \hat{i} + \hat{j} + \hat{k} \), and \( \mathbf{d} = 2\hat{i} + 3\hat{j} + \lambda \hat{k} \) is \( \frac{1}{6} \) units, we can follow these steps: ### Step 1: Identify the vectors We define the vertices as: - \( \mathbf{a} = \hat{i} \) - \( \mathbf{b} = \hat{i} + \hat{j} \) - \( \mathbf{c} = \hat{i} + \hat{j} + \hat{k} \) - \( \mathbf{d} = 2\hat{i} + 3\hat{j} + \lambda \hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

The volume of the tetrahedron whose vertices are the points with positon vectors hati-6hatj+10hatk, -hati-3hatj+7hatk, 5hati-hatj+lambdahatk and 7hati-4hatj+7hatk is 11 cubic units if the value of lamda is

The volume of the tetrahedron whose vertices are the points with positon vectors hati-6hatj+10hatk, -hati-3hatj+7hatk, 5hati-hatj+lambdahatk and 7hati-4hatj+7hatk is 11 cubic units if the value of lamda is

The volume of the parallelepiped whose edges are veca=2hati-3hatj+4hatk, vecb=hati+2hatj-hatk and vecc=2hati-hatj+2hatk is

If the figure formed by the four points hati+hatj-hatk,2hati+3hatj,3hati+5hatj-2hatk and hatk-hatj is

Find the volume of the parallelopiped whose edges are represented by a=2hati-3hatj+4hatk,b=hati+2hatj-hatk and c=3hati-hatj+2hatk .

The vector equation of the plane passing through the points hati+hatj-2hatk,2hati-hatj+hatk and hati+hatj+hatk , is

If two vectors 2hati+3hatj-hatk and -4hati-6hatj-lamdahatk are parallel to each other then value of lamda be

Prove that points hati+2hatj-3hatk, 2hati-hatj+hatk and 2hati+5hatj-hatk form a triangle in space.

Prove that the points hati-hatj, 4hati-3hatj+ hatk and 2hati-4hatj+5hatk are the vertices of a right angled triangle.

Find the volume of the parallelepiped with co-terminous edges 2 hati + hatj - hatk, hati + 2 hatj + 3 hatk and - 3 hati - hatj + hatk

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. The volume of the tetrahedron whose vertices are the points hati, hati...

    Text Solution

    |

  2. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca , vecb , vecc are three mutually perpendicular unit ve...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  17. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  18. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  19. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  20. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  21. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |