Home
Class 12
MATHS
Let veca, vecb, vecc be any three vector...

Let `veca, vecb, vecc` be any three vectors.Then vectors `vecu=vecaxx(vecbxxvecc), vecv=vecbxx(veccxxveca)` and `vecw=veccxx(vecaxxvecb)` are such that they are

A

collinear

B

non-coplanar

C

coplanar

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\) defined in terms of the cross products of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). ### Step-by-Step Solution: 1. **Define the vectors**: \[ \vec{u} = \vec{a} \times (\vec{b} \times \vec{c}) \] \[ \vec{v} = \vec{b} \times (\vec{c} \times \vec{a}) \] \[ \vec{w} = \vec{c} \times (\vec{a} \times \vec{b}) \] 2. **Use the vector triple product identity**: The vector triple product identity states that: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] We will apply this identity to each of the vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\). 3. **Calculate \(\vec{u}\)**: \[ \vec{u} = \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] 4. **Calculate \(\vec{v}\)**: \[ \vec{v} = \vec{b} \times (\vec{c} \times \vec{a}) = (\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a} \] 5. **Calculate \(\vec{w}\)**: \[ \vec{w} = \vec{c} \times (\vec{a} \times \vec{b}) = (\vec{c} \cdot \vec{b}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{b} \] 6. **Add the vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\)**: \[ \vec{u} + \vec{v} + \vec{w} = \left[(\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}\right] + \left[(\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a}\right] + \left[(\vec{c} \cdot \vec{b}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{b}\right] \] 7. **Combine like terms**: - The terms involving \(\vec{a}\): \[ - (\vec{b} \cdot \vec{c}) \vec{a} + (\vec{c} \cdot \vec{b}) \vec{a} = 0 \] - The terms involving \(\vec{b}\): \[ (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{c} \cdot \vec{a}) \vec{b} = 0 \] - The terms involving \(\vec{c}\): \[ (\vec{b} \cdot \vec{a}) \vec{c} - (\vec{a} \cdot \vec{b}) \vec{c} = 0 \] 8. **Conclusion**: Since all terms cancel out, we have: \[ \vec{u} + \vec{v} + \vec{w} = \vec{0} \] This implies that the vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\) are coplanar. ### Final Answer: The vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\) are coplanar.

To solve the problem, we need to analyze the vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\) defined in terms of the cross products of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). ### Step-by-Step Solution: 1. **Define the vectors**: \[ \vec{u} = \vec{a} \times (\vec{b} \times \vec{c}) \] ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors vecaxx (bvecxxvecc),vecb(veccxxveca) and veccxx(vecaxxvecb) are coplanar.

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

For any three vectors veca, vecb, vecc the value of vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb) , is

If veca, vecb, vecc are three vectors, then [(vecaxxvecb, vecbxxvecc, veccxxveca)]=

Prove that vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb)=vec0

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

If vecaxx(vecbxxvecc)=vecbxx(veccxxveca) and [(vec, vecb, vecc)]!=0 then vecaxx(vecbxxvecc) is equal to

Prove that: vecaxx[vecbxx(veccxxveca)]=(veca.vecb)(vecaxxvecc)

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. Let veca, vecb, vecc be any three vectors.Then vectors vecu=vecaxx(vec...

    Text Solution

    |

  2. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca , vecb , vecc are three mutually perpendicular unit ve...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  17. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  18. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  19. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  20. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  21. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |