Home
Class 12
MATHS
If vecaxx(vecbxxvecc)=vecbxx(veccxxveca)...

If `vecaxx(vecbxxvecc)=vecbxx(veccxxveca)` and `[(vec, vecb, vecc)]!=0`
then `vecaxx(vecbxxvecc)` is equal to

A

`vec0`

B

`vecaxxvecb`

C

`vecbxxvecc`

D

`veccxxveca`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \vec{a} \times (\vec{b} \times \vec{c}) \) under the condition that \( \vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} \times (\vec{c} \times \vec{a}) \) and that \( [\vec{a}, \vec{b}, \vec{c}] \neq 0 \). ### Step-by-Step Solution: 1. **Understanding the Vector Triple Product**: The vector triple product can be expressed using the identity: \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] and similarly, \[ \vec{b} \times (\vec{c} \times \vec{a}) = (\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a} \] 2. **Setting Up the Equation**: Given the equality: \[ \vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} \times (\vec{c} \times \vec{a}) \] we can substitute the expressions from the vector triple product identities: \[ (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = (\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a} \] 3. **Rearranging the Equation**: Rearranging the equation gives: \[ (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a} = (\vec{a} \cdot \vec{b}) \vec{c} - (\vec{b} \cdot \vec{a}) \vec{c} \] This simplifies to: \[ (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = 0 \] 4. **Analyzing the Result**: For the above equation to hold true, we can conclude that: \[ (\vec{a} \cdot \vec{c}) \vec{b} = (\vec{a} \cdot \vec{b}) \vec{c} \] This implies that either \( \vec{b} \) and \( \vec{c} \) are parallel (which contradicts the condition \( [\vec{a}, \vec{b}, \vec{c}] \neq 0 \)), or \( \vec{a} \cdot \vec{c} = 0 \) and \( \vec{a} \cdot \vec{b} = 0 \). 5. **Final Conclusion**: Therefore, we conclude that: \[ \vec{a} \times (\vec{b} \times \vec{c}) = 0 \] Hence, the value of \( \vec{a} \times (\vec{b} \times \vec{c}) \) is equal to \( \vec{0} \). ### Final Answer: \[ \vec{a} \times (\vec{b} \times \vec{c}) = \vec{0} \]

To solve the problem, we need to evaluate the expression \( \vec{a} \times (\vec{b} \times \vec{c}) \) under the condition that \( \vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} \times (\vec{c} \times \vec{a}) \) and that \( [\vec{a}, \vec{b}, \vec{c}] \neq 0 \). ### Step-by-Step Solution: 1. **Understanding the Vector Triple Product**: The vector triple product can be expressed using the identity: \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

(vecbxxvecc)xx(veccxxveca)=

If vecAxx(vecBxxvecC)=vecBxx(vecCxxvecA) and [vecA vecB vecC]!=0 then vecA.(vecBxxvecC) is equal to (A) 0 (B) vecAxxvecB (C) vecBxxvecC (D) vecCxxvecA

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

vecaxx(vecaxx(vecaxxvecb)) equals

If vec(alpha)=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=1/8 , then x+y+z=

Prove that vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb)=vec0

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=(1)/(3) , then x+y+z is equal to

Prove that vecaxx(vecb+vecc)+vecbxx(vecc+veca)+veccxx(veca+vecb)=0

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If vecaxx(vecbxxvecc)=vecbxx(veccxxveca) and [(vec, vecb, vecc)]!=0 ...

    Text Solution

    |

  2. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca , vecb , vecc are three mutually perpendicular unit ve...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  17. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  18. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  19. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  20. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  21. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |