Home
Class 12
MATHS
If veca, vecb, vecc are three vectors, t...

If `veca, vecb, vecc` are three vectors, then
`[(vecaxxvecb, vecbxxvecc, veccxxveca)]=`

A

`[(veca, vecb, vecc)]`

B

`2[(veca, vecb, vecc)]`

C

`3[(veca, vecb, vecc)]`

D

`[(veca, vecb, vecc)]^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem involving the scalar triple product of three vectors \( \vec{a}, \vec{b}, \vec{c} \), we need to evaluate the expression \( [(\vec{a} \times \vec{b}), (\vec{b} \times \vec{c}), (\vec{c} \times \vec{a})] \). ### Step-by-Step Solution: 1. **Understanding the Scalar Triple Product**: The scalar triple product of three vectors \( \vec{a}, \vec{b}, \vec{c} \) can be expressed as: \[ [\vec{a}, \vec{b}, \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}) \] This represents the volume of the parallelepiped formed by the three vectors. 2. **Applying the Vector Triple Product Identity**: We need to find the scalar triple product of the cross products: \[ [(\vec{a} \times \vec{b}), (\vec{b} \times \vec{c}), (\vec{c} \times \vec{a})] \] We can use the property of the scalar triple product, which states that the scalar triple product is invariant under cyclic permutations of the vectors. 3. **Using the Vector Triple Product Formula**: We can express the scalar triple product using the vector triple product identity: \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] We will apply this identity to our expression. 4. **Calculating Each Cross Product**: - First, calculate \( \vec{a} \times \vec{b} \). - Next, calculate \( \vec{b} \times \vec{c} \). - Finally, calculate \( \vec{c} \times \vec{a} \). 5. **Combining the Results**: Substitute the results of the cross products into the scalar triple product: \[ [(\vec{a} \times \vec{b}), (\vec{b} \times \vec{c}), (\vec{c} \times \vec{a})] = \vec{a} \cdot ((\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})) \] Use the vector triple product identity to simplify this expression. 6. **Final Result**: After applying the necessary simplifications and using the properties of the scalar triple product, we find that: \[ [(\vec{a} \times \vec{b}), (\vec{b} \times \vec{c}), (\vec{c} \times \vec{a})] = (\vec{a} \cdot \vec{b} \times \vec{c})^2 \] Therefore, the final answer is: \[ [(\vec{a} \times \vec{b}), (\vec{b} \times \vec{c}), (\vec{c} \times \vec{a})] = (\vec{a} \cdot \vec{b} \times \vec{c})^2 \]

To solve the problem involving the scalar triple product of three vectors \( \vec{a}, \vec{b}, \vec{c} \), we need to evaluate the expression \( [(\vec{a} \times \vec{b}), (\vec{b} \times \vec{c}), (\vec{c} \times \vec{a})] \). ### Step-by-Step Solution: 1. **Understanding the Scalar Triple Product**: The scalar triple product of three vectors \( \vec{a}, \vec{b}, \vec{c} \) can be expressed as: \[ [\vec{a}, \vec{b}, \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}) ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

Let veca,vecb, vecc be any three vectors, Statement 1: [(veca+vecb, vecb+vecc,vecc+veca)]=2[(veca, vecb, vecc)] Statement 2: [(vecaxxvecb, vecbxxvecc, veccxxveca)]=[(veca, vecb, vecc)]^(2)

If veca,vecb,vecc are three such that vecaxxvecb=vecc, vecbxxvecc=veca and veccxxveca=vecb , show that veca,vecb,vecc foem an orthogonal righat handed triad of unit vectors.

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca,vecb,vecc are coplanar then show that vecaxxvecb, vecbxxvecc and veccxxveca are also coplanar.

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca+2vecb+3vecc=0 , then vecaxxvecb+vecbxxvecc+veccxxveca=

If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxvecb)xx(vecaxxvecc)+(vecbxxvecc)xx(vecbxxveca)+(veccxxveca)xx(veccxxvecb) is equal to

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If veca, vecb, vecc are three vectors, then [(vecaxxvecb, vecbxxvecc...

    Text Solution

    |

  2. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca , vecb , vecc are three mutually perpendicular unit ve...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  17. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  18. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  19. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  20. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  21. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |