Home
Class 12
MATHS
If veca, vecb, vecc are non coplanar non...

If `veca, vecb, vecc` are non coplanar non null vectors such that `[(veca, vecb, vecc)]=2` then `{[(vecaxxvecb, vecbxxvecc, veccxxveca)]}^(2)=`

A

4

B

16

C

8

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \({[(\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a)]}^2}\) given that \([(\vec{a}, \vec{b}, \vec{c})] = 2\). ### Step-by-Step Solution: 1. **Understanding the Given Information:** We know that the scalar triple product \((\vec{a}, \vec{b}, \vec{c})\) is equal to 2. This can be interpreted as the volume of the parallelepiped formed by the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). 2. **Using the Properties of Cross Products:** We need to evaluate the expression \((\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a})\). We can use the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z})\vec{y} - (\vec{x} \cdot \vec{y})\vec{z} \] 3. **Calculating Each Cross Product:** We can express the dot product of the cross products: \[ (\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})(\vec{b}) - (\vec{a} \cdot \vec{b})(\vec{c}) \] Similarly, for the other terms: \[ (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) = (\vec{b} \cdot \vec{a})(\vec{c}) - (\vec{b} \cdot \vec{c})(\vec{a}) \] \[ (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = (\vec{c} \cdot \vec{b})(\vec{a}) - (\vec{c} \cdot \vec{a})(\vec{b}) \] 4. **Combining the Results:** The entire expression can be simplified using the scalar triple product: \[ \text{Let } V = [\vec{a}, \vec{b}, \vec{c}] = 2 \] Then: \[ (\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) = V^2 \] Therefore: \[ = (2)^2 = 4 \] 5. **Final Calculation:** Now, we need to square this result: \[ \{[(\vec{a} \times \vec{b}), (\vec{b} \times \vec{c}), (\vec{c} \times \vec{a})]\}^2 = 4^2 = 16 \] ### Final Answer: \[ \{[(\vec{a} \times \vec{b}), (\vec{b} \times \vec{c}), (\vec{c} \times \vec{a})]\}^2 = 16 \]

To solve the problem, we need to find the value of \({[(\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a)]}^2}\) given that \([(\vec{a}, \vec{b}, \vec{c})] = 2\). ### Step-by-Step Solution: 1. **Understanding the Given Information:** We know that the scalar triple product \((\vec{a}, \vec{b}, \vec{c})\) is equal to 2. This can be interpreted as the volume of the parallelepiped formed by the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). 2. **Using the Properties of Cross Products:** ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are three vectors, then [(vecaxxvecb, vecbxxvecc, veccxxveca)]=

If veca+2vecb+3vecc=0 , then vecaxxvecb+vecbxxvecc+veccxxveca=

If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then [vecaxxvecb vecbxxvecc veccxxveca] is equal to

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca, vecaxxvecb=vecc and veccxxveca=vecb then (A) |veca|+|vecb|+|vecc|=3 (B) |vecb|=1 (C) |veca|=1 (D) none of these

if veca,vecb,vecc are non coplanar and non zero vectors such that vecbxxvecc=veca,vecaxxvecb=vecc and veccxxveca=vecb then 1 (a) |a|=1 (b)|a|=2 (c) |a|=3 (d) |a|=4

If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxvecb)xx(vecaxxvecc)+(vecbxxvecc)xx(vecbxxveca)+(veccxxveca)xx(veccxxvecb) is equal to

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If veca, vecb, vecc are non coplanar non null vectors such that [(veca...

    Text Solution

    |

  2. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca , vecb , vecc are three mutually perpendicular unit ve...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  17. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  18. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  19. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  20. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  21. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |