Home
Class 12
MATHS
If veca, vecb, vecc and veca', vecb', ve...

If `veca, vecb, vecc` and `veca', vecb', vecc'` form a reciprocal system of vectors then
`veca.veca'+vecb.vecb'+vecc.vecc'=`

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \(\vec{a}, \vec{b}, \vec{c}\) and \(\vec{a}', \vec{b}', \vec{c}'\) form a reciprocal system of vectors, then: \[ \vec{a} \cdot \vec{a}' + \vec{b} \cdot \vec{b}' + \vec{c} \cdot \vec{c}' = 3 \] ### Step-by-Step Solution: 1. **Understanding Reciprocal Vectors**: - The vectors \(\vec{a}', \vec{b}', \vec{c}'\) are defined as the reciprocals of \(\vec{a}, \vec{b}, \vec{c}\) respectively. This means: \[ \vec{a}' = \frac{\vec{b} \times \vec{c}}{\vec{a} \cdot (\vec{b} \times \vec{c})} \] \[ \vec{b}' = \frac{\vec{c} \times \vec{a}}{\vec{b} \cdot (\vec{c} \times \vec{a})} \] \[ \vec{c}' = \frac{\vec{a} \times \vec{b}}{\vec{c} \cdot (\vec{a} \times \vec{b})} \] 2. **Calculating \(\vec{a} \cdot \vec{a}'\)**: - Substitute \(\vec{a}'\): \[ \vec{a} \cdot \vec{a}' = \vec{a} \cdot \left(\frac{\vec{b} \times \vec{c}}{\vec{a} \cdot (\vec{b} \times \vec{c})}\right) \] - Using the property of the scalar triple product, we know: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = \text{Volume of the parallelepiped} = \vec{a} \cdot \vec{b} \times \vec{c} \] - Therefore: \[ \vec{a} \cdot \vec{a}' = \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{\vec{a} \cdot (\vec{b} \times \vec{c})} = 1 \] 3. **Calculating \(\vec{b} \cdot \vec{b}'\)**: - Substitute \(\vec{b}'\): \[ \vec{b} \cdot \vec{b}' = \vec{b} \cdot \left(\frac{\vec{c} \times \vec{a}}{\vec{b} \cdot (\vec{c} \times \vec{a})}\right) \] - Again, using the scalar triple product: \[ \vec{b} \cdot (\vec{c} \times \vec{a}) = 1 \] - Thus: \[ \vec{b} \cdot \vec{b}' = 1 \] 4. **Calculating \(\vec{c} \cdot \vec{c}'\)**: - Substitute \(\vec{c}'\): \[ \vec{c} \cdot \vec{c}' = \vec{c} \cdot \left(\frac{\vec{a} \times \vec{b}}{\vec{c} \cdot (\vec{a} \times \vec{b})}\right) \] - Using the scalar triple product: \[ \vec{c} \cdot (\vec{a} \times \vec{b}) = 1 \] - Therefore: \[ \vec{c} \cdot \vec{c}' = 1 \] 5. **Final Calculation**: - Now, we can sum up all the results: \[ \vec{a} \cdot \vec{a}' + \vec{b} \cdot \vec{b}' + \vec{c} \cdot \vec{c}' = 1 + 1 + 1 = 3 \] ### Conclusion: Thus, we conclude that: \[ \vec{a} \cdot \vec{a}' + \vec{b} \cdot \vec{b}' + \vec{c} \cdot \vec{c}' = 3 \]

To solve the problem, we need to show that if \(\vec{a}, \vec{b}, \vec{c}\) and \(\vec{a}', \vec{b}', \vec{c}'\) form a reciprocal system of vectors, then: \[ \vec{a} \cdot \vec{a}' + \vec{b} \cdot \vec{b}' + \vec{c} \cdot \vec{c}' = 3 \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then [(veca', vecb', vecc')]=

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If veca,vecb,vecc and veca\', vecb\', vecc\' are reciprocal system of vectors prove that vecaxxveca'+vecbxxvecb'+veccxxvecc\'=vec0

Let veca, vecb , vecc be non -coplanar vectors and let equations veca', vecb', vecc' are reciprocal system of vector veca, vecb ,vecc then prove that veca xx veca' + vecb xx vecb' + vecc xx vecc' is a null vector.

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.vecb\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . [veca,vecb,vecc]((veca\'xxvecb\')+(vecb\'xxvecc \')+(vecc\'xxveca\'))= (A) veca+vecb+vecc (B) veca+vecb-vecc (C) 2(veca+vecb+vecc) (D) 3(veca\'+vecb\'+vecc\')

If veca, vecb and vecc be three non-coplanar vectors and a',b' and c' constitute the reciprocal system of vectors, then prove that i. vecr=(vecr.veca')veca+(vecr.vecb')vecb+(vecr.vecc')vecc ii. vecr= (vecr.veca)veca'+(vecr.vecb)vecb' + (vecr.vecc) vecc'

Let veca,vecb and vecc be a set of non- coplanar vectors and veca'vecb' and vecc' be its reciprocal set. prove that veca=(vecb'xxvecc')/([veca'vecb'vecc']),vecb=(vecc'xxveca')/([veca'vecb'vecc'])andvecc=(veca'xxvecb')/([veca'vecb'vecc'])

If |veca|=3, |vecb|=1, |vecc|=4 and veca + vecb + vecc= vec0 , find the value of veca.vecb+ vecb.vecc + vecc.veca .

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb\')+(veccxxvecc\') is (A) veca+vecb+vecc (B) veca\'+vecb\'+vecc\' (C) 0 (D) none of these

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system o...

    Text Solution

    |

  2. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca , vecb , vecc are three mutually perpendicular unit ve...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  17. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  18. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  19. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  20. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  21. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |