Home
Class 12
MATHS
If veca, vecb, vecc and veca', vecb', ve...

If `veca, vecb, vecc` and `veca', vecb', vecc'` form a reciprocal system of vectors then `[(veca', vecb', vecc')]=`

A

`[(veca, vecb, vecc)]`

B

`1/([(veca, vecb, vecc)])`

C

`[(veca, vecb, vecc)]^(2)`

D

`(-1)/([(veca, vecb, vecc)])`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the scalar triple product of the vectors \( \vec{a}', \vec{b}', \vec{c}' \) given that \( \vec{a}, \vec{b}, \vec{c} \) and \( \vec{a}', \vec{b}', \vec{c}' \) form a reciprocal system of vectors. ### Step-by-Step Solution: 1. **Understanding Reciprocal Vectors**: Since \( \vec{a}', \vec{b}', \vec{c}' \) are the reciprocal vectors of \( \vec{a}, \vec{b}, \vec{c} \), we can express: \[ \vec{a}' = \frac{\vec{b} \times \vec{c}}{[\vec{a}, \vec{b}, \vec{c}]} \] \[ \vec{b}' = \frac{\vec{c} \times \vec{a}}{[\vec{a}, \vec{b}, \vec{c}]} \] \[ \vec{c}' = \frac{\vec{a} \times \vec{b}}{[\vec{a}, \vec{b}, \vec{c}]} \] where \( [\vec{a}, \vec{b}, \vec{c}] \) is the scalar triple product of \( \vec{a}, \vec{b}, \vec{c} \). 2. **Assuming Scalar Triple Product**: Let \( [\vec{a}, \vec{b}, \vec{c}] = \frac{1}{\lambda} \). Then we can rewrite the reciprocal vectors as: \[ \vec{a}' = \lambda (\vec{b} \times \vec{c}), \quad \vec{b}' = \lambda (\vec{c} \times \vec{a}), \quad \vec{c}' = \lambda (\vec{a} \times \vec{b}) \] 3. **Finding the Scalar Triple Product**: We need to find \( [\vec{a}', \vec{b}', \vec{c}'] \): \[ [\vec{a}', \vec{b}', \vec{c}'] = \vec{a}' \cdot (\vec{b}' \times \vec{c}') \] 4. **Substituting the Values**: Substitute \( \vec{b}' \) and \( \vec{c}' \): \[ [\vec{a}', \vec{b}', \vec{c}'] = \vec{a}' \cdot \left( \lambda (\vec{c} \times \vec{a}) \times \lambda (\vec{a} \times \vec{b}) \right) \] This simplifies to: \[ = \lambda^2 \vec{a}' \cdot \left( (\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b}) \right) \] 5. **Using the Vector Triple Product Identity**: Using the identity \( \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \): \[ = \lambda^2 \vec{a}' \cdot \left( (\vec{c} \cdot \vec{b}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{b} \right) \] 6. **Evaluating the Dot Product**: Since \( \vec{a}' = \lambda (\vec{b} \times \vec{c}) \): \[ = \lambda^2 \left( \lambda (\vec{b} \times \vec{c}) \cdot \left( (\vec{c} \cdot \vec{b}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{b} \right) \right) \] The term \( \vec{b} \times \vec{c} \cdot \vec{a} \) will yield the scalar triple product \( [\vec{a}, \vec{b}, \vec{c}] \). 7. **Final Expression**: Therefore, we have: \[ [\vec{a}', \vec{b}', \vec{c}'] = \lambda^2 \cdot [\vec{a}, \vec{b}, \vec{c}] \] Substituting \( [\vec{a}, \vec{b}, \vec{c}] = \frac{1}{\lambda} \): \[ [\vec{a}', \vec{b}', \vec{c}'] = \lambda^2 \cdot \frac{1}{\lambda} = \lambda \] 8. **Conclusion**: Since \( \lambda = [\vec{a}, \vec{b}, \vec{c}]^{-1} \): \[ [\vec{a}', \vec{b}', \vec{c}'] = \frac{1}{[\vec{a}, \vec{b}, \vec{c}]^2} \] ### Final Answer: \[ [\vec{a}', \vec{b}', \vec{c}'] = \frac{1}{[\vec{a}, \vec{b}, \vec{c}]^2} \]

To solve the problem, we need to find the scalar triple product of the vectors \( \vec{a}', \vec{b}', \vec{c}' \) given that \( \vec{a}, \vec{b}, \vec{c} \) and \( \vec{a}', \vec{b}', \vec{c}' \) form a reciprocal system of vectors. ### Step-by-Step Solution: 1. **Understanding Reciprocal Vectors**: Since \( \vec{a}', \vec{b}', \vec{c}' \) are the reciprocal vectors of \( \vec{a}, \vec{b}, \vec{c} \), we can express: \[ \vec{a}' = \frac{\vec{b} \times \vec{c}}{[\vec{a}, \vec{b}, \vec{c}]} ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then veca.veca'+vecb.vecb'+vecc.vecc'=

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then veca.veca'+vecb.vecb'+vecc.vecc'=

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If veca,vecb,vecc and veca\', vecb\', vecc\' are reciprocal system of vectors prove that vecaxxveca'+vecbxxvecb'+veccxxvecc\'=vec0

Let veca, vecb , vecc be non -coplanar vectors and let equations veca', vecb', vecc' are reciprocal system of vector veca, vecb ,vecc then prove that veca xx veca' + vecb xx vecb' + vecc xx vecc' is a null vector.

If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in the reciprocal system of vectors veca, vecb, vecc reciprocal veca of vector veca is

If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in the reciprocal system of vectors veca, vecb, vecc reciprocal veca of vector veca is

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 and veca.vecb\'=veca.vecc\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of [veca\' vecb\' vecc\']^-1 is (A) 2[veca vecb vecc] (B) [veca vecb vecc] (C) 3[veca vecb vecc] (D) 0

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb\')+(veccxxvecc\') is (A) veca+vecb+vecc (B) veca\'+vecb\'+vecc\' (C) 0 (D) none of these

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.vecb\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . [veca,vecb,vecc]((veca\'xxvecb\')+(vecb\'xxvecc \')+(vecc\'xxveca\'))= (A) veca+vecb+vecc (B) veca+vecb-vecc (C) 2(veca+vecb+vecc) (D) 3(veca\'+vecb\'+vecc\')

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system ...

    Text Solution

    |

  2. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca , vecb , vecc are three mutually perpendicular unit ve...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  17. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  18. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  19. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  20. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  21. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |