Home
Class 12
MATHS
If veca, vecb, vecc are three non-coplan...

If `veca, vecb, vecc` are three non-coplanar vectors, then a vector `vecr` satisfying `vecr.veca=vecr.vecb=vecr.vecc=1`, is

A

`vecaxxvecb+vecbxxvecc+veccxxveca`

B

`1/([(veca, vecb, vecc)]){vecaxxvecb+vecbxxvec+veccxxveca}`

C

`[(veca, vecb, vecc)]{vecaxxvecb+vecbxxvecc+vecxxveca}`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector \(\vec{r}\) that satisfies the conditions \(\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 1\) given that \(\vec{a}, \vec{b}, \vec{c}\) are three non-coplanar vectors, we can follow these steps: ### Step 1: Understand the implications of non-coplanarity Since \(\vec{a}, \vec{b}, \vec{c}\) are non-coplanar, the vectors \(\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}\) are also non-coplanar. This means we can express any vector \(\vec{r}\) in terms of these cross products. ### Step 2: Express \(\vec{r}\) in terms of cross products We can express \(\vec{r}\) as: \[ \vec{r} = X (\vec{a} \times \vec{b}) + Y (\vec{b} \times \vec{c}) + Z (\vec{c} \times \vec{a}) \] where \(X, Y, Z\) are scalars to be determined. ### Step 3: Take the dot product with \(\vec{a}\) Taking the dot product of \(\vec{r}\) with \(\vec{a}\): \[ \vec{r} \cdot \vec{a} = X (\vec{a} \times \vec{b}) \cdot \vec{a} + Y (\vec{b} \times \vec{c}) \cdot \vec{a} + Z (\vec{c} \times \vec{a}) \cdot \vec{a} \] The terms involving \((\vec{a} \times \vec{b})\) and \((\vec{c} \times \vec{a})\) will be zero because they are perpendicular to \(\vec{a}\). Thus: \[ \vec{r} \cdot \vec{a} = Y (\vec{b} \times \vec{c}) \cdot \vec{a} \] Setting this equal to 1 (from the problem statement): \[ Y (\vec{b} \times \vec{c}) \cdot \vec{a} = 1 \] ### Step 4: Solve for \(Y\) From the equation above, we can express \(Y\): \[ Y = \frac{1}{(\vec{b} \times \vec{c}) \cdot \vec{a}} \] ### Step 5: Repeat for \(\vec{b}\) and \(\vec{c}\) Similarly, taking the dot product of \(\vec{r}\) with \(\vec{b}\): \[ \vec{r} \cdot \vec{b} = X (\vec{a} \times \vec{b}) \cdot \vec{b} + Y (\vec{b} \times \vec{c}) \cdot \vec{b} + Z (\vec{c} \times \vec{a}) \cdot \vec{b} \] Again, the terms involving \((\vec{a} \times \vec{b})\) and \((\vec{b} \times \vec{c})\) will be zero, leading to: \[ \vec{r} \cdot \vec{b} = Z (\vec{c} \times \vec{a}) \cdot \vec{b} = 1 \] Thus, \[ Z = \frac{1}{(\vec{c} \times \vec{a}) \cdot \vec{b}} \] For \(\vec{c}\): \[ \vec{r} \cdot \vec{c} = X (\vec{a} \times \vec{b}) \cdot \vec{c} + Y (\vec{b} \times \vec{c}) \cdot \vec{c} + Z (\vec{c} \times \vec{a}) \cdot \vec{c} \] This simplifies to: \[ \vec{r} \cdot \vec{c} = X (\vec{a} \times \vec{b}) \cdot \vec{c} = 1 \] Thus, \[ X = \frac{1}{(\vec{a} \times \vec{b}) \cdot \vec{c}} \] ### Step 6: Substitute back into \(\vec{r}\) Now we have: \[ X = \frac{1}{(\vec{a} \times \vec{b}) \cdot \vec{c}}, \quad Y = \frac{1}{(\vec{b} \times \vec{c}) \cdot \vec{a}}, \quad Z = \frac{1}{(\vec{c} \times \vec{a}) \cdot \vec{b}} \] Substituting these values back into the expression for \(\vec{r}\): \[ \vec{r} = \frac{1}{(\vec{a} \times \vec{b}) \cdot \vec{c}} (\vec{a} \times \vec{b}) + \frac{1}{(\vec{b} \times \vec{c}) \cdot \vec{a}} (\vec{b} \times \vec{c}) + \frac{1}{(\vec{c} \times \vec{a}) \cdot \vec{b}} (\vec{c} \times \vec{a}) \] ### Final Result Thus, the vector \(\vec{r}\) is: \[ \vec{r} = \frac{1}{\text{scalar triple product of } \vec{a}, \vec{b}, \vec{c}} \left( \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \right) \]

To find the vector \(\vec{r}\) that satisfies the conditions \(\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 1\) given that \(\vec{a}, \vec{b}, \vec{c}\) are three non-coplanar vectors, we can follow these steps: ### Step 1: Understand the implications of non-coplanarity Since \(\vec{a}, \vec{b}, \vec{c}\) are non-coplanar, the vectors \(\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}\) are also non-coplanar. This means we can express any vector \(\vec{r}\) in terms of these cross products. ### Step 2: Express \(\vec{r}\) in terms of cross products We can express \(\vec{r}\) as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb and vecc are three non-coplanar vectors, then the vector equation vecr-(1-p-q)veca+pvecb+qvecc represents a

If vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,vecb,vecc)]),vecr=(vecaxxvecb)/([(veca,vecb,vecb)]) where veca,vecb,vecc are three non-coplanar vectors, then the value of the expression (veca+vecb+vecc).(vecp+vecq+vecr) is

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

Statement 1: Let vecr be any vector in space. Then, vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk Statement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then vecr={([(vecr, vecb, vecc)])/([(veca, vecb, vecc)])}veca+{([(vecr, vecc, veca)])/([(veca, vecb, vecc)])}vecb+{([(vecr, veca, vecb)])/([(veca, vecb, vecc)])}vecc

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca,vecb,vecc are three non coplanar vectors then the vector equation vecr=(1-p-q)veca+pvecb+qvecc are represents a: (A) straighat line (B) plane (C) plane passing through the origin (D) sphere

Statement 1: Any vector in space can be uniquely written as the linear combination of three non-coplanar vectors. Stetement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then [(veca,vecb, vecc)]vecc+[(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb=[(veca, vecb, vecc)]vecr

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr...

    Text Solution

    |

  2. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  3. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  4. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  5. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  6. If veca , vecb , vecc are three mutually perpendicular unit ve...

    Text Solution

    |

  7. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  8. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  9. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  10. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  11. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  12. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  13. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  14. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  15. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  16. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  17. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  18. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  19. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  20. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  21. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |