Home
Class 12
MATHS
The volume of the tetrahedron whose vert...

The volume of the tetrahedron whose vertices are the points with positon vectors `hati-6hatj+10hatk, -hati-3hatj+7hatk, 5hati-hatj+lambdahatk` and `7hati-4hatj+7hatk` is 11 cubic units if the value of `lamda` is

A

`-1,7`

B

`1,7`

C

`-7`

D

`-1,-7`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) for the tetrahedron with given vertices, we will use the formula for the volume of a tetrahedron defined by vectors. The volume \( V \) of a tetrahedron formed by the position vectors \( \vec{A}, \vec{B}, \vec{C}, \vec{D} \) is given by: \[ V = \frac{1}{6} \left| \vec{AB} \cdot (\vec{AC} \times \vec{AD}) \right| \] Where: - \( \vec{AB} = \vec{B} - \vec{A} \) - \( \vec{AC} = \vec{C} - \vec{A} \) - \( \vec{AD} = \vec{D} - \vec{A} \) ### Step 1: Define the position vectors Let: - \( \vec{A} = \hat{i} - 6\hat{j} + 10\hat{k} \) - \( \vec{B} = -\hat{i} - 3\hat{j} + 7\hat{k} \) - \( \vec{C} = 5\hat{i} - \hat{j} + \lambda\hat{k} \) - \( \vec{D} = 7\hat{i} - 4\hat{j} + 7\hat{k} \) ### Step 2: Calculate the vectors \( \vec{AB}, \vec{AC}, \vec{AD} \) 1. **Calculate \( \vec{AB} \)**: \[ \vec{AB} = \vec{B} - \vec{A} = (-\hat{i} - 3\hat{j} + 7\hat{k}) - (\hat{i} - 6\hat{j} + 10\hat{k}) = -2\hat{i} + 3\hat{j} - 3\hat{k} \] 2. **Calculate \( \vec{AC} \)**: \[ \vec{AC} = \vec{C} - \vec{A} = (5\hat{i} - \hat{j} + \lambda\hat{k}) - (\hat{i} - 6\hat{j} + 10\hat{k}) = 4\hat{i} + 5\hat{j} + (\lambda - 10)\hat{k} \] 3. **Calculate \( \vec{AD} \)**: \[ \vec{AD} = \vec{D} - \vec{A} = (7\hat{i} - 4\hat{j} + 7\hat{k}) - (\hat{i} - 6\hat{j} + 10\hat{k}) = 6\hat{i} + 2\hat{j} - 3\hat{k} \] ### Step 3: Calculate the scalar triple product \( \vec{AB} \cdot (\vec{AC} \times \vec{AD}) \) 1. **Calculate \( \vec{AC} \times \vec{AD} \)**: \[ \vec{AC} \times \vec{AD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 5 & \lambda - 10 \\ 6 & 2 & -3 \end{vmatrix} \] Expanding this determinant: \[ = \hat{i} \begin{vmatrix} 5 & \lambda - 10 \\ 2 & -3 \end{vmatrix} - \hat{j} \begin{vmatrix} 4 & \lambda - 10 \\ 6 & -3 \end{vmatrix} + \hat{k} \begin{vmatrix} 4 & 5 \\ 6 & 2 \end{vmatrix} \] Calculating the minors: \[ = \hat{i} (5 \cdot (-3) - 2 \cdot (\lambda - 10)) - \hat{j} (4 \cdot (-3) - 6 \cdot (\lambda - 10)) + \hat{k} (4 \cdot 2 - 5 \cdot 6) \] \[ = \hat{i} (-15 - 2\lambda + 20) - \hat{j} (-12 - 6\lambda + 60) + \hat{k} (8 - 30) \] \[ = \hat{i} (5 - 2\lambda) - \hat{j} (48 - 6\lambda) - 22\hat{k} \] Thus, \[ \vec{AC} \times \vec{AD} = (5 - 2\lambda)\hat{i} - (48 - 6\lambda)\hat{j} - 22\hat{k} \] 2. **Calculate \( \vec{AB} \cdot (\vec{AC} \times \vec{AD}) \)**: \[ \vec{AB} \cdot (\vec{AC} \times \vec{AD}) = (-2\hat{i} + 3\hat{j} - 3\hat{k}) \cdot ((5 - 2\lambda)\hat{i} - (48 - 6\lambda)\hat{j} - 22\hat{k}) \] \[ = -2(5 - 2\lambda) + 3(-48 + 6\lambda) - 3(-22) \] \[ = -10 + 4\lambda - 144 + 18\lambda + 66 \] \[ = 22\lambda - 88 \] ### Step 4: Set the volume equal to 11 cubic units Using the volume formula: \[ \frac{1}{6} |22\lambda - 88| = 11 \] \[ |22\lambda - 88| = 66 \] This gives us two equations: 1. \( 22\lambda - 88 = 66 \) 2. \( 22\lambda - 88 = -66 \) ### Step 5: Solve for \( \lambda \) 1. From \( 22\lambda - 88 = 66 \): \[ 22\lambda = 154 \implies \lambda = \frac{154}{22} = 7 \] 2. From \( 22\lambda - 88 = -66 \): \[ 22\lambda = 22 \implies \lambda = 1 \] ### Final Answer The values of \( \lambda \) are \( 1 \) and \( 7 \).

To find the value of \( \lambda \) for the tetrahedron with given vertices, we will use the formula for the volume of a tetrahedron defined by vectors. The volume \( V \) of a tetrahedron formed by the position vectors \( \vec{A}, \vec{B}, \vec{C}, \vec{D} \) is given by: \[ V = \frac{1}{6} \left| \vec{AB} \cdot (\vec{AC} \times \vec{AD}) \right| \] Where: - \( \vec{AB} = \vec{B} - \vec{A} \) ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If the volume of the parallelopiped whose coterminus edges are represented by the vectors 5hati -4hatj +hatk , 4hati+3hatj-lambda hatk and hati-2hatj+7hatk is 216 cubic units, find the value of lambda .

The points with position vectors alpha hati+hatj+hatk, hati-hatj-hatk, hati+2hatj-hatk, hati+hatj+betahatk are coplanar if

The volume of the tetrahedron whose vertices are the points hati, hati+hatj, hati+hatj+hatk and 2hati+3hatj+lamdahatk is 1//6 units, Then the values of lamda

Find the angle between the following pairs of vectors 3hati+2hatj-6hatk, 4hati-3hatj+hatk , hati-2hatj+3hatk, 3hati-2hatj+hatk

Consider points A,B,C annd D with position vectors 7hati-4hatj+7hatk,hati-6hatj+10hatk,-1hati-3hatj+4hatk and 5hati-hatj+5hatk , respectively. Then, ABCD is

Prove that four points position vectors 6hati-7hatj,16hati-19 hatj-4hatk,3hatj-6hatk and 2hati + 5hatj+ 10hatk are not coplanar.

Find the direction cosines of the resultant of the vectors (hati+hatj+hatk),(-hati+hatj+hatk),(hati-hatj+hatk) and (hati+hatj-hatk) .

The point having position vectors 2hati+3hatj+4hatk,3hati+4hatj+2hatk and 4hati+2hatj+3hatk are the vertices of

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

Find the volume of the parallelopiped, whose three coterminous edges are represented by the vectors hati+hatj+hatk,hati-hatj+hatk,hati+2hatj-hatk .

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Section I - Solved Mcqs
  1. For three vectors, vecu, vecv and vecw which of the following expressi...

    Text Solution

    |

  2. If veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk and vecc=hati+alphahatj...

    Text Solution

    |

  3. The volume of the tetrahedron whose vertices are the points with posit...

    Text Solution

    |

  4. If a vector veca is expressed as the sum of two vectors vec(alpha) and...

    Text Solution

    |

  5. veca and vecb are two given vectors. With theses vectors as adjacent s...

    Text Solution

    |

  6. The angles of a triangle , two of whose sides are respresented by vect...

    Text Solution

    |

  7. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  8. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  9. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  10. If the vectots phati+hatj+hatk, hati+qhatj+hatk and hati+hatj+rhatk(p!...

    Text Solution

    |

  11. If vecrxxvecb=veccxxvecb and vecr|veca then vecr is equal to

    Text Solution

    |

  12. If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(...

    Text Solution

    |

  13. Let veca=2hati+3hatj-hatk and vecb=hati-2hatj+3hatk. Then , the value ...

    Text Solution

    |

  14. Let veca, vecb, vecc be three unit vectors such that veca. vecb=veca.v...

    Text Solution

    |

  15. If veca, vecb, vecc are three non coplanar, non zero vectors then (vec...

    Text Solution

    |

  16. If the acute angle that the vector alphahati+betahatj+gammahatk makes ...

    Text Solution

    |

  17. If veca,vecb,vecc are three non-coplanar vectors and vecp,vecq,vecr ar...

    Text Solution

    |

  18. If veca vecb are non zero and non collinear vectors, then [(veca, vecb...

    Text Solution

    |

  19. If vecr is a unit vector such that vecr=x(vecbxxvecc)+y(veccxxveca)+...

    Text Solution

    |

  20. Let a,b,c be three vectors such that [a b c]=2, if r=l(bxxc)+m(cxxa)+n...

    Text Solution

    |