Home
Class 12
MATHS
If veca, vecb, vecc are any three vector...

If `veca, vecb, vecc` are any three vectors such that `(veca+vecb).vecc=(veca-vecb)vecc=0` then`(vecaxxvecb)xxvecc` is

A

`vec0`

B

`veca`

C

`vecb`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((\vec{a} \times \vec{b}) \times \vec{c}\) given the conditions \((\vec{a} + \vec{b}) \cdot \vec{c} = 0\) and \((\vec{a} - \vec{b}) \cdot \vec{c} = 0\). ### Step-by-Step Solution: 1. **Write down the given equations:** \[ (\vec{a} + \vec{b}) \cdot \vec{c} = 0 \quad \text{(1)} \] \[ (\vec{a} - \vec{b}) \cdot \vec{c} = 0 \quad \text{(2)} \] 2. **Expand the equations:** From equation (1): \[ \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} = 0 \quad \text{(3)} \] From equation (2): \[ \vec{a} \cdot \vec{c} - \vec{b} \cdot \vec{c} = 0 \quad \text{(4)} \] 3. **Add equations (3) and (4):** \[ (\vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}) + (\vec{a} \cdot \vec{c} - \vec{b} \cdot \vec{c}) = 0 + 0 \] This simplifies to: \[ 2(\vec{a} \cdot \vec{c}) = 0 \] Therefore, we conclude: \[ \vec{a} \cdot \vec{c} = 0 \quad \text{(5)} \] 4. **Substitute \(\vec{a} \cdot \vec{c} = 0\) into equation (3):** From equation (3): \[ 0 + \vec{b} \cdot \vec{c} = 0 \] This implies: \[ \vec{b} \cdot \vec{c} = 0 \quad \text{(6)} \] 5. **Now, we need to find \((\vec{a} \times \vec{b}) \times \vec{c}\):** We can use the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Here, let \(\vec{x} = \vec{a}\), \(\vec{y} = \vec{b}\), and \(\vec{z} = \vec{c}\): \[ (\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a} \] 6. **Substituting the values from equations (5) and (6):** Since \(\vec{a} \cdot \vec{c} = 0\) and \(\vec{b} \cdot \vec{c} = 0\): \[ (\vec{a} \times \vec{b}) \times \vec{c} = 0 \cdot \vec{b} - 0 \cdot \vec{a} = \vec{0} \] ### Final Result: \[ (\vec{a} \times \vec{b}) \times \vec{c} = \vec{0} \]

To solve the problem, we need to find the value of \((\vec{a} \times \vec{b}) \times \vec{c}\) given the conditions \((\vec{a} + \vec{b}) \cdot \vec{c} = 0\) and \((\vec{a} - \vec{b}) \cdot \vec{c} = 0\). ### Step-by-Step Solution: 1. **Write down the given equations:** \[ (\vec{a} + \vec{b}) \cdot \vec{c} = 0 \quad \text{(1)} \] ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc and any three vectors such that veca.vecb=0,vecb.vecc=0, then veca and vecc are

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca,vecb, vecc are three vectors such that |veca |= 5, |vecb| = 12 and | vecc|=13 and veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca is equal to

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc + vecc.veca is equal to

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca,vecb,vecc are three unit vectors such that veca+vecb+vecc=0, then veca.vecb+vecb.vecc+vecc.veca is equal to (A) -1 (B) 3 (C) 0 (D) -3/2

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Section I - Solved Mcqs
  1. If the vectots phati+hatj+hatk, hati+qhatj+hatk and hati+hatj+rhatk(p!...

    Text Solution

    |

  2. If vecrxxvecb=veccxxvecb and vecr|veca then vecr is equal to

    Text Solution

    |

  3. If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(...

    Text Solution

    |

  4. Let veca=2hati+3hatj-hatk and vecb=hati-2hatj+3hatk. Then , the value ...

    Text Solution

    |

  5. Let veca, vecb, vecc be three unit vectors such that veca. vecb=veca.v...

    Text Solution

    |

  6. If veca, vecb, vecc are three non coplanar, non zero vectors then (vec...

    Text Solution

    |

  7. If the acute angle that the vector alphahati+betahatj+gammahatk makes ...

    Text Solution

    |

  8. If veca,vecb,vecc are three non-coplanar vectors and vecp,vecq,vecr ar...

    Text Solution

    |

  9. If veca vecb are non zero and non collinear vectors, then [(veca, vecb...

    Text Solution

    |

  10. If vecr is a unit vector such that vecr=x(vecbxxvecc)+y(veccxxveca)+...

    Text Solution

    |

  11. Let a,b,c be three vectors such that [a b c]=2, if r=l(bxxc)+m(cxxa)+n...

    Text Solution

    |

  12. If vecb is a unit vector, then (veca. vecb)vecb+vecbxx(vecaxxvecb) is ...

    Text Solution

    |

  13. If veca, vecb, vecc are any three non coplanar vectors, then [(veca+ve...

    Text Solution

    |

  14. If veca, vecb, vecc are any three non coplanar vectors, then (veca+v...

    Text Solution

    |

  15. Let veca, vecb and vecc be three having magnitude 1,1 and 2 respective...

    Text Solution

    |

  16. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  17. If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxv...

    Text Solution

    |

  18. If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (...

    Text Solution

    |

  19. (vecaxxvecb).(veccxxvecd) is not equal to

    Text Solution

    |

  20. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |