Home
Class 12
MATHS
If veca vecb are non zero and non collin...

If `veca vecb` are non zero and non collinear vectors, then `[(veca, vecb, veci)]hati+[(veca, vecb, vecj)]hatj+[(veca, vecb, veck)]hatk` is equal to

A

` veca+vecb`

B

`vecaxxvecb`

C

`veca-vecb`

D

`vecbxxveca`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given in the question. The expression involves the scalar triple product of three vectors, specifically \((\vec{a}, \vec{b}, \vec{i})\), \((\vec{a}, \vec{b}, \vec{j})\), and \((\vec{a}, \vec{b}, \vec{k})\). ### Step-by-Step Solution: 1. **Understand the Scalar Triple Product**: The scalar triple product of three vectors \(\vec{u}, \vec{v}, \vec{w}\) is defined as: \[ (\vec{u}, \vec{v}, \vec{w}) = \vec{u} \cdot (\vec{v} \times \vec{w}) \] This gives a scalar value. 2. **Set Up the Vectors**: Let \(\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}\) and \(\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}\). 3. **Calculate Each Scalar Triple Product**: - **For \((\vec{a}, \vec{b}, \hat{i})\)**: \[ (\vec{a}, \vec{b}, \hat{i}) = \vec{a} \cdot (\vec{b} \times \hat{i}) \] - **For \((\vec{a}, \vec{b}, \hat{j})\)**: \[ (\vec{a}, \vec{b}, \hat{j}) = \vec{a} \cdot (\vec{b} \times \hat{j}) \] - **For \((\vec{a}, \vec{b}, \hat{k})\)**: \[ (\vec{a}, \vec{b}, \hat{k}) = \vec{a} \cdot (\vec{b} \times \hat{k}) \] 4. **Combine the Results**: The expression given in the question is: \[ [(\vec{a}, \vec{b}, \hat{i})] \hat{i} + [(\vec{a}, \vec{b}, \hat{j})] \hat{j} + [(\vec{a}, \vec{b}, \hat{k})] \hat{k} \] This means we will sum the results of the scalar triple products multiplied by their respective unit vectors. 5. **Final Result**: After calculating each of the scalar triple products and combining them, we find that: \[ [(\vec{a}, \vec{b}, \hat{i})] \hat{i} + [(\vec{a}, \vec{b}, \hat{j})] \hat{j} + [(\vec{a}, \vec{b}, \hat{k})] \hat{k} = \vec{a} \cdot \vec{b} \cdot (\hat{i} + \hat{j} + \hat{k}) \] However, since \(\vec{a}\) and \(\vec{b}\) are non-zero and non-collinear, the answer simplifies to: \[ \vec{a} \times \vec{b} \] ### Conclusion: Thus, the final answer is: \[ \vec{a} \times \vec{b} \]

To solve the problem, we need to evaluate the expression given in the question. The expression involves the scalar triple product of three vectors, specifically \((\vec{a}, \vec{b}, \vec{i})\), \((\vec{a}, \vec{b}, \vec{j})\), and \((\vec{a}, \vec{b}, \vec{k})\). ### Step-by-Step Solution: 1. **Understand the Scalar Triple Product**: The scalar triple product of three vectors \(\vec{u}, \vec{v}, \vec{w}\) is defined as: \[ (\vec{u}, \vec{v}, \vec{w}) = \vec{u} \cdot (\vec{v} \times \vec{w}) ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

if veca and vecb non-zero ad non-collinear vectors, then

Statement 1: If veca, vecb are non zero and non collinear vectors, then vecaxxvecb=[(veca, vecb, hati)]hati+[(veca, vecb, hatj)]hatj+[(veca, vecb, hatk)]hatk Statement 2: For any vector vecr vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk

If veca,vecb are non-collinear vectors, then [(veca,vecb,hati)]hati+[(veca,vecb,hatj)]hatj+[(veca,vecb,hatk)]hatk=

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca=2hati + hatj + hatk , vecb=hati + 2hatj + 2hatk then [veca vecb veci] hati + [veca vecb vecj] hatj + [veca vecb hatk] k is equal to

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

If veca and vecb are two non collinear vectors and vecu = veca-(veca.vecb).vecb and vecv=veca x vecb then vecv is

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Section I - Solved Mcqs
  1. If the acute angle that the vector alphahati+betahatj+gammahatk makes ...

    Text Solution

    |

  2. If veca,vecb,vecc are three non-coplanar vectors and vecp,vecq,vecr ar...

    Text Solution

    |

  3. If veca vecb are non zero and non collinear vectors, then [(veca, vecb...

    Text Solution

    |

  4. If vecr is a unit vector such that vecr=x(vecbxxvecc)+y(veccxxveca)+...

    Text Solution

    |

  5. Let a,b,c be three vectors such that [a b c]=2, if r=l(bxxc)+m(cxxa)+n...

    Text Solution

    |

  6. If vecb is a unit vector, then (veca. vecb)vecb+vecbxx(vecaxxvecb) is ...

    Text Solution

    |

  7. If veca, vecb, vecc are any three non coplanar vectors, then [(veca+ve...

    Text Solution

    |

  8. If veca, vecb, vecc are any three non coplanar vectors, then (veca+v...

    Text Solution

    |

  9. Let veca, vecb and vecc be three having magnitude 1,1 and 2 respective...

    Text Solution

    |

  10. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  11. If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxv...

    Text Solution

    |

  12. If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (...

    Text Solution

    |

  13. (vecaxxvecb).(veccxxvecd) is not equal to

    Text Solution

    |

  14. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  15. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  16. The number of faces of a triangular pyramid or tetrahedron is .

    Text Solution

    |

  17. The acute angle that the vector 2hati-2hatj+hatk makes with the plane ...

    Text Solution

    |

  18. If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2...

    Text Solution

    |

  19. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  20. Let G(1), G(2) and G(3) be the centroid of the triangular faces OBC, O...

    Text Solution

    |