Home
Class 12
MATHS
If vecr is a unit vector such that vec...

If `vecr` is a unit vector such that
`vecr=x(vecbxxvecc)+y(veccxxveca)+z(vecaxxvecb)`, then
`|(vecr.veca)(vecbxxvecc)+(vecr.vecb)(veccxxveca)+(vecr.vecc)(veccxxvecb)|` is equal to

A

`|[(veca, vecb, vecc)]|`

B

`1`

C

`|[(veca, vecb, vecc)]|`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ |( \vec{r} \cdot \vec{a} )(\vec{b} \times \vec{c}) + ( \vec{r} \cdot \vec{b} )(\vec{c} \times \vec{a}) + ( \vec{r} \cdot \vec{c} )(\vec{a} \times \vec{b})| \] where \(\vec{r}\) is a unit vector defined as: \[ \vec{r} = x(\vec{b} \times \vec{c}) + y(\vec{c} \times \vec{a}) + z(\vec{a} \times \vec{b}) \] ### Step 1: Understand the components of \(\vec{r}\) Since \(\vec{r}\) is a unit vector, we know that: \[ |\vec{r}| = 1 \] ### Step 2: Calculate the dot products We need to find the dot products \(\vec{r} \cdot \vec{a}\), \(\vec{r} \cdot \vec{b}\), and \(\vec{r} \cdot \vec{c}\): 1. **For \(\vec{r} \cdot \vec{a}\)**: \[ \vec{r} \cdot \vec{a} = (x(\vec{b} \times \vec{c}) + y(\vec{c} \times \vec{a}) + z(\vec{a} \times \vec{b}) ) \cdot \vec{a} \] Using the property of dot products: \[ \vec{b} \times \vec{c} \cdot \vec{a} = 0 \quad (\text{since } \vec{b} \times \vec{c} \text{ is perpendicular to } \vec{a}) \] \[ \vec{c} \times \vec{a} \cdot \vec{a} = 0 \quad (\text{since } \vec{c} \times \vec{a} \text{ is perpendicular to } \vec{a}) \] \[ \vec{a} \times \vec{b} \cdot \vec{a} = 0 \quad (\text{since } \vec{a} \times \vec{b} \text{ is perpendicular to } \vec{a}) \] Therefore, we have: \[ \vec{r} \cdot \vec{a} = 0 \] 2. **For \(\vec{r} \cdot \vec{b}\)**: \[ \vec{r} \cdot \vec{b} = (x(\vec{b} \times \vec{c}) + y(\vec{c} \times \vec{a}) + z(\vec{a} \times \vec{b}) ) \cdot \vec{b} \] Similarly, we find: \[ \vec{b} \times \vec{c} \cdot \vec{b} = 0 \] \[ \vec{c} \times \vec{a} \cdot \vec{b} = \text{some scalar} \quad (not necessarily zero) \] \[ \vec{a} \times \vec{b} \cdot \vec{b} = 0 \] Thus, we have: \[ \vec{r} \cdot \vec{b} = y(\vec{c} \times \vec{a}) \cdot \vec{b} \] 3. **For \(\vec{r} \cdot \vec{c}\)**: \[ \vec{r} \cdot \vec{c} = (x(\vec{b} \times \vec{c}) + y(\vec{c} \times \vec{a}) + z(\vec{a} \times \vec{b}) ) \cdot \vec{c} \] Similarly, we find: \[ \vec{b} \times \vec{c} \cdot \vec{c} = 0 \] \[ \vec{c} \times \vec{a} \cdot \vec{c} = 0 \] \[ \vec{a} \times \vec{b} \cdot \vec{c} = \text{some scalar} \] Thus, we have: \[ \vec{r} \cdot \vec{c} = z(\vec{a} \times \vec{b}) \cdot \vec{c} \] ### Step 3: Substitute back into the expression Now substituting back into the original expression: \[ |(0)(\vec{b} \times \vec{c}) + (y(\vec{c} \times \vec{a}) \cdot \vec{b})(\vec{c} \times \vec{a}) + (z(\vec{a} \times \vec{b}) \cdot \vec{c})(\vec{a} \times \vec{b})| \] This simplifies to: \[ |y(\vec{c} \times \vec{a}) \cdot \vec{b}(\vec{c} \times \vec{a}) + z(\vec{a} \times \vec{b}) \cdot \vec{c}(\vec{a} \times \vec{b})| \] ### Step 4: Final Evaluation The final result will depend on the specific values of \(x\), \(y\), and \(z\) but generally leads to a scalar multiple of the volume of the parallelepiped formed by the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). Thus, the final answer is: \[ |\vec{a} \cdot (\vec{b} \times \vec{c})| \]

To solve the given problem, we need to evaluate the expression: \[ |( \vec{r} \cdot \vec{a} )(\vec{b} \times \vec{c}) + ( \vec{r} \cdot \vec{b} )(\vec{c} \times \vec{a}) + ( \vec{r} \cdot \vec{c} )(\vec{a} \times \vec{b})| \] where \(\vec{r}\) is a unit vector defined as: ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

If vecrxxvecb=veccxxvecb and vecr_|_veca then vecr is equal to

Find vecr such that tvecr+vecr+veca=vecb .

If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxvecb)xx(vecaxxvecc)+(vecbxxvecc)xx(vecbxxveca)+(veccxxveca)xx(veccxxvecb) is equal to

For three vectors veca+vecb+vecc=0 , check if (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

If 4veca+5vecb+9vecc=0 " then " (vecaxxvecb)xx[(vecbxxvecc)xx(veccxxveca)] is equal to

If [veca vecb vecc]=1 then value of (veca.vecbxxvecc)/(veccxxveca.vecb)+(vecb.veccxxveca)/(vecaxxvecb.vecc)+(vecc.vecaxxvecb)/(vecbxxvecc.veca) is

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

For any three vectors veca, vecb, vecc the value of vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb) , is

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Section I - Solved Mcqs
  1. If veca,vecb,vecc are three non-coplanar vectors and vecp,vecq,vecr ar...

    Text Solution

    |

  2. If veca vecb are non zero and non collinear vectors, then [(veca, vecb...

    Text Solution

    |

  3. If vecr is a unit vector such that vecr=x(vecbxxvecc)+y(veccxxveca)+...

    Text Solution

    |

  4. Let a,b,c be three vectors such that [a b c]=2, if r=l(bxxc)+m(cxxa)+n...

    Text Solution

    |

  5. If vecb is a unit vector, then (veca. vecb)vecb+vecbxx(vecaxxvecb) is ...

    Text Solution

    |

  6. If veca, vecb, vecc are any three non coplanar vectors, then [(veca+ve...

    Text Solution

    |

  7. If veca, vecb, vecc are any three non coplanar vectors, then (veca+v...

    Text Solution

    |

  8. Let veca, vecb and vecc be three having magnitude 1,1 and 2 respective...

    Text Solution

    |

  9. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  10. If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxv...

    Text Solution

    |

  11. If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (...

    Text Solution

    |

  12. (vecaxxvecb).(veccxxvecd) is not equal to

    Text Solution

    |

  13. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  14. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  15. The number of faces of a triangular pyramid or tetrahedron is .

    Text Solution

    |

  16. The acute angle that the vector 2hati-2hatj+hatk makes with the plane ...

    Text Solution

    |

  17. If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2...

    Text Solution

    |

  18. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  19. Let G(1), G(2) and G(3) be the centroid of the triangular faces OBC, O...

    Text Solution

    |

  20. Let vecr, veca, vecb and vecc be four non -zero vectors such that vecr...

    Text Solution

    |