Home
Class 12
MATHS
If vecb is a unit vector, then (veca. ve...

If `vecb` is a unit vector, then `(veca. vecb)vecb+vecbxx(vecaxxvecb)` is a equal to

A

`|veca|^(2)vecb`

B

`(veca.vecb)veca`

C

`veca`

D

`(veca. vecb)vecb`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression \((\vec{a} \cdot \vec{b}) \vec{b} + \vec{b} \times (\vec{a} \times \vec{b})\), given that \(\vec{b}\) is a unit vector. ### Step-by-Step Solution: 1. **Understanding the Components**: - We know that \(\vec{b}\) is a unit vector, which means \(|\vec{b}| = 1\). - The expression consists of two parts: the dot product and the cross product. 2. **Evaluate the Dot Product**: - The first part of the expression is \((\vec{a} \cdot \vec{b}) \vec{b}\). - This represents a vector in the direction of \(\vec{b}\) scaled by the scalar \(\vec{a} \cdot \vec{b}\). 3. **Evaluate the Cross Product**: - The second part is \(\vec{b} \times (\vec{a} \times \vec{b})\). - We can use the vector triple product identity: \(\vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z}\). - Here, let \(\vec{x} = \vec{b}\), \(\vec{y} = \vec{a}\), and \(\vec{z} = \vec{b}\). - Applying the identity, we get: \[ \vec{b} \times (\vec{a} \times \vec{b}) = (\vec{b} \cdot \vec{b}) \vec{a} - (\vec{b} \cdot \vec{a}) \vec{b} \] - Since \(\vec{b}\) is a unit vector, \(\vec{b} \cdot \vec{b} = 1\). - Thus, the expression simplifies to: \[ \vec{b} \times (\vec{a} \times \vec{b}) = \vec{a} - (\vec{b} \cdot \vec{a}) \vec{b} \] 4. **Combine the Results**: - Now, substituting back into the original expression: \[ (\vec{a} \cdot \vec{b}) \vec{b} + \vec{a} - (\vec{b} \cdot \vec{a}) \vec{b} \] - Notice that \((\vec{a} \cdot \vec{b}) \vec{b}\) and \(-(\vec{b} \cdot \vec{a}) \vec{b}\) are equal (since the dot product is commutative). - Therefore, they cancel each other out: \[ (\vec{a} \cdot \vec{b}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{b} + \vec{a} = \vec{a} \] 5. **Final Result**: - The final result of the expression is: \[ \vec{a} \] ### Conclusion: The expression \((\vec{a} \cdot \vec{b}) \vec{b} + \vec{b} \times (\vec{a} \times \vec{b})\) simplifies to \(\vec{a}\).

To solve the problem, we need to simplify the expression \((\vec{a} \cdot \vec{b}) \vec{b} + \vec{b} \times (\vec{a} \times \vec{b})\), given that \(\vec{b}\) is a unit vector. ### Step-by-Step Solution: 1. **Understanding the Components**: - We know that \(\vec{b}\) is a unit vector, which means \(|\vec{b}| = 1\). - The expression consists of two parts: the dot product and the cross product. ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are two unit vectors, then the vector (veca+vecb)xx(vecaxxvecb) is parallel to the vector

If veca, vecb are non zero vectors, then ((vecaxxvecb)xxveca).((vecbxxveca)xxvecb) equals

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If |veca|=|vecb| , then (veca+vecb).(veca-vecb) is equal to

Prove that: (2veca-vecb)xx (veca+2vecb)=5vecaxxvecb .

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca=hatj-hatk and vecc=hati+hatj+hatk are given vectors, and vecb is such that veca.vecb=3 and vecaxxvecb+vecc=0 than |vecb|^(2) is equal to ………………

Given that veca and vecb are unit vectors. If the vectors vecp=3veca-5vecb and vecq=veca+vecb are mutually perpendicular, then

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

veca and vecb are two unit vectors that are mutually perpendicular. A unit vector that if equally inclined to veca, vecb and veca xxvecb is equal to

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Section I - Solved Mcqs
  1. If vecr is a unit vector such that vecr=x(vecbxxvecc)+y(veccxxveca)+...

    Text Solution

    |

  2. Let a,b,c be three vectors such that [a b c]=2, if r=l(bxxc)+m(cxxa)+n...

    Text Solution

    |

  3. If vecb is a unit vector, then (veca. vecb)vecb+vecbxx(vecaxxvecb) is ...

    Text Solution

    |

  4. If veca, vecb, vecc are any three non coplanar vectors, then [(veca+ve...

    Text Solution

    |

  5. If veca, vecb, vecc are any three non coplanar vectors, then (veca+v...

    Text Solution

    |

  6. Let veca, vecb and vecc be three having magnitude 1,1 and 2 respective...

    Text Solution

    |

  7. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  8. If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxv...

    Text Solution

    |

  9. If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (...

    Text Solution

    |

  10. (vecaxxvecb).(veccxxvecd) is not equal to

    Text Solution

    |

  11. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  12. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  13. The number of faces of a triangular pyramid or tetrahedron is .

    Text Solution

    |

  14. The acute angle that the vector 2hati-2hatj+hatk makes with the plane ...

    Text Solution

    |

  15. If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2...

    Text Solution

    |

  16. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  17. Let G(1), G(2) and G(3) be the centroid of the triangular faces OBC, O...

    Text Solution

    |

  18. Let vecr, veca, vecb and vecc be four non -zero vectors such that vecr...

    Text Solution

    |

  19. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  20. If a and b are unit vectors, then the vector defined as V=(a+b)times(a...

    Text Solution

    |