Home
Class 12
MATHS
If veca, vecb, vecc are any three non co...

If `veca, vecb, vecc` are any three non coplanar vectors, then `[(veca+vecb+vecc, veca-vecc, veca-vecb)]` is equal to

A

`0`

B

`[(veca, vecb, vecc)]`

C

`2[(veca, vecb, vecc)]`

D

`=3[(veca, vecb, vecc)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the scalar triple product \([( \vec{a} + \vec{b} + \vec{c}, \vec{a} - \vec{c}, \vec{a} - \vec{b})]\). We will follow the steps outlined below: ### Step 1: Rewrite the Scalar Triple Product We start with the expression: \[ [( \vec{a} + \vec{b} + \vec{c}, \vec{a} - \vec{c}, \vec{a} - \vec{b})] \] This can be rewritten using the properties of the scalar triple product: \[ = (\vec{a} + \vec{b} + \vec{c}) \cdot ((\vec{a} - \vec{c}) \times (\vec{a} - \vec{b})) \] ### Step 2: Expand the Cross Product Next, we need to compute the cross product \((\vec{a} - \vec{c}) \times (\vec{a} - \vec{b})\): \[ = \vec{a} \times \vec{a} - \vec{a} \times \vec{b} - \vec{c} \times \vec{a} + \vec{c} \times \vec{b} \] Since \(\vec{a} \times \vec{a} = \vec{0}\), we simplify this to: \[ = - \vec{a} \times \vec{b} - \vec{c} \times \vec{a} + \vec{c} \times \vec{b} \] ### Step 3: Substitute Back into the Scalar Triple Product Now we substitute this back into our expression: \[ = (\vec{a} + \vec{b} + \vec{c}) \cdot (- \vec{a} \times \vec{b} - \vec{c} \times \vec{a} + \vec{c} \times \vec{b}) \] ### Step 4: Distribute the Dot Product Distributing the dot product gives us: \[ = -(\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} \times \vec{b}) - (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{c} \times \vec{b}) \] ### Step 5: Evaluate Each Term Using the properties of the scalar triple product: 1. \((\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} \times \vec{b}) = 0\) (since \(\vec{a} \times \vec{b}\) is perpendicular to \(\vec{a}\) and \(\vec{b}\)) 2. \((\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{c} \times \vec{a}) = 0\) (since \(\vec{c} \times \vec{a}\) is perpendicular to \(\vec{c}\) and \(\vec{a}\)) 3. \((\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{c} \times \vec{b}) = 0\) (since \(\vec{c} \times \vec{b}\) is perpendicular to \(\vec{c}\) and \(\vec{b}\)) ### Step 6: Combine the Results Since all terms evaluate to zero, we have: \[ = 0 \] ### Final Result Thus, the value of the scalar triple product is: \[ \boxed{0} \]

To solve the problem, we need to evaluate the scalar triple product \([( \vec{a} + \vec{b} + \vec{c}, \vec{a} - \vec{c}, \vec{a} - \vec{b})]\). We will follow the steps outlined below: ### Step 1: Rewrite the Scalar Triple Product We start with the expression: \[ [( \vec{a} + \vec{b} + \vec{c}, \vec{a} - \vec{c}, \vec{a} - \vec{b})] \] This can be rewritten using the properties of the scalar triple product: ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If vec a , vec b , vec c are any three noncoplanar vector, then ( veca + vecb + vecc )[( veca + vecb )×( veca + vecc )] is :

If vec a , vec ba n d vec c are three non coplanar vectors, then ( veca + vecb + vecc )[( veca + vecb )×( veca + vecc )] is :

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23veca)]

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Section I - Solved Mcqs
  1. Let a,b,c be three vectors such that [a b c]=2, if r=l(bxxc)+m(cxxa)+n...

    Text Solution

    |

  2. If vecb is a unit vector, then (veca. vecb)vecb+vecbxx(vecaxxvecb) is ...

    Text Solution

    |

  3. If veca, vecb, vecc are any three non coplanar vectors, then [(veca+ve...

    Text Solution

    |

  4. If veca, vecb, vecc are any three non coplanar vectors, then (veca+v...

    Text Solution

    |

  5. Let veca, vecb and vecc be three having magnitude 1,1 and 2 respective...

    Text Solution

    |

  6. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  7. If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxv...

    Text Solution

    |

  8. If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (...

    Text Solution

    |

  9. (vecaxxvecb).(veccxxvecd) is not equal to

    Text Solution

    |

  10. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  11. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  12. The number of faces of a triangular pyramid or tetrahedron is .

    Text Solution

    |

  13. The acute angle that the vector 2hati-2hatj+hatk makes with the plane ...

    Text Solution

    |

  14. If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2...

    Text Solution

    |

  15. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  16. Let G(1), G(2) and G(3) be the centroid of the triangular faces OBC, O...

    Text Solution

    |

  17. Let vecr, veca, vecb and vecc be four non -zero vectors such that vecr...

    Text Solution

    |

  18. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  19. If a and b are unit vectors, then the vector defined as V=(a+b)times(a...

    Text Solution

    |

  20. If vec(alpha)=2hati+3hatj-hatk, vec(beta)=-hati+2hatj-4hatk, vecgamma=...

    Text Solution

    |