Home
Class 12
MATHS
If the vectors veca, vecb, vecc and vecd...

If the vectors `veca, vecb, vecc` and `vecd` are coplanar vectors, then `(vecaxxvecb)xx(veccxxvecd)` is equal to

A

`veca+vecb+vecc+vecd`

B

`vec0`

C

`veca+vecb=vecc+vecd`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})\) given that the vectors \(\vec{a}, \vec{b}, \vec{c},\) and \(\vec{d}\) are coplanar. ### Step-by-Step Solution: 1. **Understand the Coplanarity Condition**: - Since the vectors \(\vec{a}, \vec{b}, \vec{c},\) and \(\vec{d}\) are coplanar, any scalar triple product involving these vectors will be zero. This means: \[ [\vec{a}, \vec{b}, \vec{c}] = 0 \quad \text{and} \quad [\vec{a}, \vec{b}, \vec{d}] = 0 \] where \([\vec{x}, \vec{y}, \vec{z}]\) denotes the scalar triple product of vectors \(\vec{x}, \vec{y},\) and \(\vec{z}\). 2. **Apply the Vector Triple Product Identity**: - We use the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] - In our case, let \(\vec{x} = \vec{a} \times \vec{b}\), \(\vec{y} = \vec{c}\), and \(\vec{z} = \vec{d}\): \[ (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = (\vec{a} \times \vec{b} \cdot \vec{d}) \vec{c} - (\vec{a} \times \vec{b} \cdot \vec{c}) \vec{d} \] 3. **Evaluate the Scalar Products**: - Since \(\vec{a}, \vec{b}, \vec{c},\) and \(\vec{d}\) are coplanar, we know: \[ \vec{a} \times \vec{b} \cdot \vec{c} = 0 \quad \text{and} \quad \vec{a} \times \vec{b} \cdot \vec{d} = 0 \] - Therefore, substituting these values into the expression gives: \[ (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = 0 \cdot \vec{c} - 0 \cdot \vec{d} = \vec{0} \] 4. **Conclusion**: - The final result is that the expression evaluates to the null vector: \[ (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0} \] ### Final Answer: \[ (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0} \]

To solve the problem, we need to evaluate the expression \((\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})\) given that the vectors \(\vec{a}, \vec{b}, \vec{c},\) and \(\vec{d}\) are coplanar. ### Step-by-Step Solution: 1. **Understand the Coplanarity Condition**: - Since the vectors \(\vec{a}, \vec{b}, \vec{c},\) and \(\vec{d}\) are coplanar, any scalar triple product involving these vectors will be zero. This means: \[ [\vec{a}, \vec{b}, \vec{c}] = 0 \quad \text{and} \quad [\vec{a}, \vec{b}, \vec{d}] = 0 ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If the vectors veca, vecb, vecc, vecd are coplanar show that (vecaxxvecb)xx(veccxxvecd)=vec0

If vectors, vecb, vecc and vecd are not coplanar, the prove that vector (veca xx vecb) xx (vecc xx vecd) + ( veca xx vecc) xx (vecd xx vecb) + (veca xx vecd) xx (vecb xx vecc) is parallel to veca .

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca,vecb,vecc,vecd are any for vectors then (vecaxxvecb)xx(veccxxvecd) is a vector (A) perpendicular to veca,vecb,vecc,vecd (B) along the the line intersection of two planes, one containing veca,vecb and the other containing vecc,vecd . (C) equally inclined both vecaxxvecb and veccxxvecd (D) none of these

If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(veccxxvecd)=1 and veca.vecc=1/2, then

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(veccxxvecd)=1 and veca.vecc=1/2 then (A) veca,vecb,vecc are non coplanar (B) vecb,vecc, vecd are non coplanar (C) vecb, vecd are non paralel (D) veca, vecd are paralel and vecb, vecc are parallel

If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxvecb)xx(vecaxxvecc)+(vecbxxvecc)xx(vecbxxveca)+(veccxxveca)xx(veccxxvecb) is equal to

If the three vectors veca,vecb,vecc are non coplanar express each of vecbxxvecc, veccxxveca, vecaxxvecb in terms of veca,vecb,vecc .

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Section I - Solved Mcqs
  1. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  2. If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxv...

    Text Solution

    |

  3. If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (...

    Text Solution

    |

  4. (vecaxxvecb).(veccxxvecd) is not equal to

    Text Solution

    |

  5. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  6. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  7. The number of faces of a triangular pyramid or tetrahedron is .

    Text Solution

    |

  8. The acute angle that the vector 2hati-2hatj+hatk makes with the plane ...

    Text Solution

    |

  9. If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2...

    Text Solution

    |

  10. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  11. Let G(1), G(2) and G(3) be the centroid of the triangular faces OBC, O...

    Text Solution

    |

  12. Let vecr, veca, vecb and vecc be four non -zero vectors such that vecr...

    Text Solution

    |

  13. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  14. If a and b are unit vectors, then the vector defined as V=(a+b)times(a...

    Text Solution

    |

  15. If vec(alpha)=2hati+3hatj-hatk, vec(beta)=-hati+2hatj-4hatk, vecgamma=...

    Text Solution

    |

  16. Let alpha = a hati + b hatj + chatk , vecbeta = bhati + chatj + ahatk ...

    Text Solution

    |

  17. Given |veca|=|vecb|=1 and |veca + vecb|= sqrt3 if vecc is a vector suc...

    Text Solution

    |

  18. If vecmu and vecv be unit vector. If vecv is a vector such that vecv +...

    Text Solution

    |

  19. If veca, vecb, vecc be three vectors of magnitude sqrt(3),1,2 such tha...

    Text Solution

    |

  20. If veca bot vecb then vector vecv in terms of veca and vecb satisfying...

    Text Solution

    |