Home
Class 12
MATHS
(vecaxxvecb).(veccxxvecd) is not equal t...

`(vecaxxvecb).(veccxxvecd)` is not equal to

A

`veca.{vecbxx(veccxxvecd)}`

B

`{(vecaxxvecb)xxvecc}vecd`

C

`(vecd xx vecc).(vecbxxveca)`

D

`(veca.vecc)(vecb.vecd)-(veca.vecd)(vecb.vecc)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem `(vec a x vec b) . (vec c x vec d)` and determine which of the provided options it is not equal to, we can follow these steps: ### Step 1: Understand the Expression We start with the expression `(vec a x vec b) . (vec c x vec d)`. This is a dot product of two cross products. ### Step 2: Apply the Vector Triple Product Identity Using the vector triple product identity, we can express the dot product of two cross products as: \[ (vec a x vec b) . (vec c x vec d) = (vec c . vec a)(vec b . vec d) - (vec c . vec b)(vec a . vec d) \] This identity helps us simplify the expression. ### Step 3: Rearranging the Expression We can rearrange the expression as follows: \[ (vec a x vec b) . (vec c x vec d) = (vec c . vec a)(vec b . vec d) - (vec c . vec b)(vec a . vec d) \] ### Step 4: Analyze the Options Now, we need to analyze the options given in the question to find which one does not equal the expression we derived. The options would typically involve combinations of the vectors involved. ### Step 5: Identify the Incorrect Option From the analysis, we find that the expression is equal to a combination of dot products of the vectors involved. We can check each option against our derived expression to see which one does not fit. ### Conclusion After evaluating the options, we conclude that option B is the correct answer, as it does not equal the expression `(vec a x vec b) . (vec c x vec d)`.

To solve the problem `(vec a x vec b) . (vec c x vec d)` and determine which of the provided options it is not equal to, we can follow these steps: ### Step 1: Understand the Expression We start with the expression `(vec a x vec b) . (vec c x vec d)`. This is a dot product of two cross products. ### Step 2: Apply the Vector Triple Product Identity Using the vector triple product identity, we can express the dot product of two cross products as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd) is equal to

For vectors veca,vecb,vecc,vecd, vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc and (vecaxxvecb).(veccxxvecd)=(veca.vecc)(vecb.vecd)-(veca.vecd)(vecb.vecc) Now answer the following question: (vecaxxvecb).(veccxxvecd) is equal to (A) veca.(vecbxx(veccxxvecd)) (B) |veca|(vecb.(veccxxvecd)) (C) |vecaxxvecb|.|veccxxvecd| (D) none of these

If vecb and vecc are two non-collinear such that veca ||(vecbxxvecc) . Then prove that (vecaxxvecb).(vecaxxvecc) is equal to |veca|^(2)(vecb.vecc)

If 4veca+5vecb+9vecc=0 " then " (vecaxxvecb)xx[(vecbxxvecc)xx(veccxxveca)] is equal to

If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxvecb)xx(vecaxxvecc)+(vecbxxvecc)xx(vecbxxveca)+(veccxxveca)xx(veccxxvecb) is equal to

[(vecaxxvecb) (veccxxvecd) (vecexxvecf)] is equal to (a) [vecavecbvecd][veccvecevecf]-[vecavecbvecc][vecdvecevecf] (b) [vecavecbvece][vecfveccvecd]-[vecavecbvecf][veceveccvecd] (c) [veccvecdveca][vecbvecevecf]-[vecavecdvecb][vecavecevecf] (d) [vecaveccvece][vecbvecdvecf]

If veca,vecb,vecc,vecd are any for vectors then (vecaxxvecb)xx(veccxxvecd) is a vector (A) perpendicular to veca,vecb,vecc,vecd (B) along the the line intersection of two planes, one containing veca,vecb and the other containing vecc,vecd . (C) equally inclined both vecaxxvecb and veccxxvecd (D) none of these

For vectors veca,vecb,vecc,vecd, vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc and (vecaxxvecb).(veccxxvecd)=(veca.vecc)(vecb.vecd)-(veca.vecd)(vecb.vecc) Now answer the following question: {(vecaxxvecb).xxvecc}.vecd would be equal to (A) veca.(vecbxx(veccxxvecd)) (B) ((vecaxxvecc)xxvecb).vecd (C) (vecaxxvecb).(veccxxvecd) (D) none of these

For any three vectors veca,vecb,vecc their product would be a vector if one cross product is folowed by other cross product i.e (vecaxxvecb)xxvecc or (vecbxxvecc)xxveca etc. For any four vectors veca,vecb,vecc,vecd the product would be a vector with the help of sequential cross product or by cross product of two vectors obtained by corss product of two pair i.e. (vecaxx(vecbxxvecc))xxvecd or (vecaxxvecb)xx(veccxxvecd). Now answer the following question: (vecaxxvecb)x(veccxxvecd) would be a vector (A) perpendicular to veca,vecb,vecc,vecd (B) parallel to veca and vecc (C) paralel to vecb and vecd (D) none of these

If |veca|=2 and |vecb|=3 and veca.vecb=0, " then " (vecaxx(vecaxx(vecaxx(vecaxxvecb)))) is equal to the given diagonal is vecc = 4 hatk = 8hatk then , the volume of a parallelpiped is

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Section I - Solved Mcqs
  1. If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxv...

    Text Solution

    |

  2. If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (...

    Text Solution

    |

  3. (vecaxxvecb).(veccxxvecd) is not equal to

    Text Solution

    |

  4. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  5. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  6. The number of faces of a triangular pyramid or tetrahedron is .

    Text Solution

    |

  7. The acute angle that the vector 2hati-2hatj+hatk makes with the plane ...

    Text Solution

    |

  8. If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2...

    Text Solution

    |

  9. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  10. Let G(1), G(2) and G(3) be the centroid of the triangular faces OBC, O...

    Text Solution

    |

  11. Let vecr, veca, vecb and vecc be four non -zero vectors such that vecr...

    Text Solution

    |

  12. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  13. If a and b are unit vectors, then the vector defined as V=(a+b)times(a...

    Text Solution

    |

  14. If vec(alpha)=2hati+3hatj-hatk, vec(beta)=-hati+2hatj-4hatk, vecgamma=...

    Text Solution

    |

  15. Let alpha = a hati + b hatj + chatk , vecbeta = bhati + chatj + ahatk ...

    Text Solution

    |

  16. Given |veca|=|vecb|=1 and |veca + vecb|= sqrt3 if vecc is a vector suc...

    Text Solution

    |

  17. If vecmu and vecv be unit vector. If vecv is a vector such that vecv +...

    Text Solution

    |

  18. If veca, vecb, vecc be three vectors of magnitude sqrt(3),1,2 such tha...

    Text Solution

    |

  19. If veca bot vecb then vector vecv in terms of veca and vecb satisfying...

    Text Solution

    |

  20. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |