Home
Class 12
MATHS
If veca,vecb and vecc are three non copl...

If `veca,vecb and vecc` are three non coplanar vectors and `vecr` is any vector in space, then `(vecaxxvecb)xx(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)=`

A

`2[(veca, vecb, vecc)]vecr`

B

`3[(veca, vecb, vecc)]vecr`

C

`[(veca, vecb, vecc)]vecr`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

We have
`(vecaxxvecb)xx(vecrxxvecc)=[(veca, vecb, vecc)]vecr-[(veca, vecb, vecr)]vecc`
`(vecbxxvecc)xx(vecrxxveca)=[(vecab, vecc, veca)]vecc-[(vecb, vecc, vecr)]veca`
`(veccxxveca)xx(vecrxxvecc)=[(vecc, veca, vecb)]vecr-[(vecc, veca, vecr)]vecb`
`:.(vecaxxvecb)xx(vecrxxvecc)+(vecbxxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)`
`=3[(veca, vecb, vecc)]vecr-[(veca, vecb, vecc)]vecc+[(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb`
`=3[(veca, vecb, vecc)]vecr=[(veca, vecb, vecc)]vecr=2[(veca, vecb, vecc)]vecr`.
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)=

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

Statement 1: Any vector in space can be uniquely written as the linear combination of three non-coplanar vectors. Stetement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then [(veca,vecb, vecc)]vecc+[(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb=[(veca, vecb, vecc)]vecr

vec a , vec ba n d vec c are three non-coplanar ,non-zero vectors and vec r is any vector in space, then ( veca × vecb )×( vecr × vecc )+( vecb × vecc )×( vecr × veca )+( vecc × veca )×( vecr × vecb ) is equal to

If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxvecb)xx(vecaxxvecc)+(vecbxxvecc)xx(vecbxxveca)+(veccxxveca)xx(veccxxvecb) is equal to

Statement 1: Let vecr be any vector in space. Then, vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk Statement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then vecr={([(vecr, vecb, vecc)])/([(veca, vecb, vecc)])}veca+{([(vecr, vecc, veca)])/([(veca, vecb, vecc)])}vecb+{([(vecr, veca, vecb)])/([(veca, vecb, vecc)])}vecc

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca,vecb and vecc are non coplnar and non zero vectors and vecr is any vector in space then [vecc vecr vecb]veca+[veca vecr vecc] vecb+[vecb vecr veca]c= (A) [veca vecb vecc] (B) [veca vecb vecc]vecr (C) vecr/([veca vecb vecc]) (D) vecr.(veca+vecb+vecc)

If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Section I - Solved Mcqs
  1. (vecaxxvecb).(veccxxvecd) is not equal to

    Text Solution

    |

  2. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  3. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  4. The number of faces of a triangular pyramid or tetrahedron is .

    Text Solution

    |

  5. The acute angle that the vector 2hati-2hatj+hatk makes with the plane ...

    Text Solution

    |

  6. If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2...

    Text Solution

    |

  7. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  8. Let G(1), G(2) and G(3) be the centroid of the triangular faces OBC, O...

    Text Solution

    |

  9. Let vecr, veca, vecb and vecc be four non -zero vectors such that vecr...

    Text Solution

    |

  10. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  11. If a and b are unit vectors, then the vector defined as V=(a+b)times(a...

    Text Solution

    |

  12. If vec(alpha)=2hati+3hatj-hatk, vec(beta)=-hati+2hatj-4hatk, vecgamma=...

    Text Solution

    |

  13. Let alpha = a hati + b hatj + chatk , vecbeta = bhati + chatj + ahatk ...

    Text Solution

    |

  14. Given |veca|=|vecb|=1 and |veca + vecb|= sqrt3 if vecc is a vector suc...

    Text Solution

    |

  15. If vecmu and vecv be unit vector. If vecv is a vector such that vecv +...

    Text Solution

    |

  16. If veca, vecb, vecc be three vectors of magnitude sqrt(3),1,2 such tha...

    Text Solution

    |

  17. If veca bot vecb then vector vecv in terms of veca and vecb satisfying...

    Text Solution

    |

  18. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  19. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  20. If vecA , vecB and vecC are vectors such that |vecB| = |vecC| prove th...

    Text Solution

    |