Home
Class 12
MATHS
If veca, vecb, vecc are non-null non cop...

If `veca, vecb, vecc` are non-null non coplanar vectors, then
`[(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=`

A

`[(veca, vecb, vecc)]`

B

3`[(veca, vecb, vecc)]`

C

`0`

D

`12[(veca, vecb, vecc)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the scalar triple product of the vectors \( \vec{A} = \vec{a} - 2\vec{b} + \vec{c} \), \( \vec{B} = \vec{b} - 2\vec{c} + \vec{a} \), and \( \vec{C} = \vec{c} - 2\vec{a} + \vec{b} \). ### Step 1: Define the vectors Let: \[ \vec{A} = \vec{a} - 2\vec{b} + \vec{c} \] \[ \vec{B} = \vec{b} - 2\vec{c} + \vec{a} \] \[ \vec{C} = \vec{c} - 2\vec{a} + \vec{b} \] ### Step 2: Calculate the scalar triple product We need to find the scalar triple product \( [\vec{A}, \vec{B}, \vec{C}] \), which can be expressed as: \[ [\vec{A}, \vec{B}, \vec{C}] = \vec{A} \cdot (\vec{B} \times \vec{C}) \] ### Step 3: Compute \( \vec{B} \times \vec{C} \) Using the properties of the cross product: \[ \vec{B} \times \vec{C} = (\vec{b} - 2\vec{c} + \vec{a}) \times (\vec{c} - 2\vec{a} + \vec{b}) \] Expanding this using the distributive property of the cross product: \[ = \vec{b} \times \vec{c} - 2\vec{b} \times \vec{a} + \vec{b} \times \vec{b} - 2\vec{c} \times \vec{c} + 2\vec{c} \times \vec{a} + \vec{a} \times \vec{b} \] Since \( \vec{b} \times \vec{b} = 0 \) and \( \vec{c} \times \vec{c} = 0 \): \[ = \vec{b} \times \vec{c} - 2\vec{b} \times \vec{a} + 2\vec{c} \times \vec{a} + \vec{a} \times \vec{b} \] ### Step 4: Combine like terms Rearranging the terms gives: \[ = \vec{b} \times \vec{c} + \vec{a} \times \vec{b} - 2\vec{b} \times \vec{a} + 2\vec{c} \times \vec{a} \] Using the property \( \vec{u} \times \vec{v} = -\vec{v} \times \vec{u} \): \[ = \vec{b} \times \vec{c} + \vec{a} \times \vec{b} + 2\vec{a} \times \vec{c} \] ### Step 5: Substitute back into the scalar triple product Now substitute \( \vec{B} \times \vec{C} \) back into the scalar triple product: \[ [\vec{A}, \vec{B}, \vec{C}] = \vec{A} \cdot (\vec{b} \times \vec{c} + \vec{a} \times \vec{b} + 2\vec{a} \times \vec{c}) \] ### Step 6: Expand the dot product Expanding this gives: \[ = \vec{A} \cdot (\vec{b} \times \vec{c}) + \vec{A} \cdot (\vec{a} \times \vec{b}) + 2\vec{A} \cdot (\vec{a} \times \vec{c}) \] ### Step 7: Evaluate each term Substituting \( \vec{A} \): \[ = (\vec{a} - 2\vec{b} + \vec{c}) \cdot (\vec{b} \times \vec{c}) + (\vec{a} - 2\vec{b} + \vec{c}) \cdot (\vec{a} \times \vec{b}) + 2(\vec{a} - 2\vec{b} + \vec{c}) \cdot (\vec{a} \times \vec{c}) \] Using the property that the dot product of a vector with a cross product of two other vectors is zero if the vector is one of the two being crossed: - \( \vec{a} \cdot (\vec{b} \times \vec{c}) \) remains. - \( -2\vec{b} \cdot (\vec{b} \times \vec{c}) = 0 \). - \( \vec{c} \cdot (\vec{b} \times \vec{c}) = 0 \). Thus, we find: \[ = \vec{a} \cdot (\vec{b} \times \vec{c}) - 2\vec{b} \cdot (\vec{a} \times \vec{b}) + 2\vec{c} \cdot (\vec{a} \times \vec{c}) \] ### Step 8: Final simplification All terms involving \( \vec{b} \) and \( \vec{c} \) with their respective cross products will yield zero, leading to: \[ = 0 \] ### Conclusion Thus, the final answer is: \[ [\vec{A}, \vec{B}, \vec{C}] = 0 \]
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23veca)]

If veca,vecb,vecc are non coplanar vectors then ([veca+2vecb vecb+2cvecc vecc+2veca])/([veca vecb vecc])= (A) 3 (B) 9 (C) 8 (D) 6

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca, vecaxxvecb=vecc and veccxxveca=vecb then (A) |veca|+|vecb|+|vecc|=3 (B) |vecb|=1 (C) |veca|=1 (D) none of these

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Section I - Solved Mcqs
  1. The number of faces of a triangular pyramid or tetrahedron is .

    Text Solution

    |

  2. The acute angle that the vector 2hati-2hatj+hatk makes with the plane ...

    Text Solution

    |

  3. If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2...

    Text Solution

    |

  4. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  5. Let G(1), G(2) and G(3) be the centroid of the triangular faces OBC, O...

    Text Solution

    |

  6. Let vecr, veca, vecb and vecc be four non -zero vectors such that vecr...

    Text Solution

    |

  7. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  8. If a and b are unit vectors, then the vector defined as V=(a+b)times(a...

    Text Solution

    |

  9. If vec(alpha)=2hati+3hatj-hatk, vec(beta)=-hati+2hatj-4hatk, vecgamma=...

    Text Solution

    |

  10. Let alpha = a hati + b hatj + chatk , vecbeta = bhati + chatj + ahatk ...

    Text Solution

    |

  11. Given |veca|=|vecb|=1 and |veca + vecb|= sqrt3 if vecc is a vector suc...

    Text Solution

    |

  12. If vecmu and vecv be unit vector. If vecv is a vector such that vecv +...

    Text Solution

    |

  13. If veca, vecb, vecc be three vectors of magnitude sqrt(3),1,2 such tha...

    Text Solution

    |

  14. If veca bot vecb then vector vecv in terms of veca and vecb satisfying...

    Text Solution

    |

  15. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  16. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  17. If vecA , vecB and vecC are vectors such that |vecB| = |vecC| prove th...

    Text Solution

    |

  18. If the magnitude of the moment about the pont hatj+hatk of a force hat...

    Text Solution

    |

  19. If the volume of parallelopiped formed by the vectors a,b,c as three c...

    Text Solution

    |

  20. If |veca|=5, |vecb|=3, |vecc|=4 and veca is perpendicular to vecb and ...

    Text Solution

    |