Home
Class 12
MATHS
If vec(alpha)=2hati+3hatj-hatk, vec(beta...

If `vec(alpha)=2hati+3hatj-hatk, vec(beta)=-hati+2hatj-4hatk, vecgamma=hati+hatj+hatk`, then `(vec(alpha)xxvec(beta)).(vec(alpha)xxvec(gamma))` is equal to

A

`-74`

B

`74`

C

`64`

D

`60`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the scalar product of two cross products of vectors \(\vec{\alpha}\), \(\vec{\beta}\), and \(\vec{\gamma}\). The vectors are given as follows: \[ \vec{\alpha} = 2\hat{i} + 3\hat{j} - \hat{k} \] \[ \vec{\beta} = -\hat{i} + 2\hat{j} - 4\hat{k} \] \[ \vec{\gamma} = \hat{i} + \hat{j} + \hat{k} \] We need to compute \((\vec{\alpha} \times \vec{\beta}) \cdot (\vec{\alpha} \times \vec{\gamma})\). ### Step 1: Calculate \(\vec{\alpha} \times \vec{\beta}\) To find the cross product \(\vec{\alpha} \times \vec{\beta}\), we set up the determinant: \[ \vec{\alpha} \times \vec{\beta} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & -1 \\ -1 & 2 & -4 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 3 & -1 \\ 2 & -4 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -1 \\ -1 & -4 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 3 \\ -1 & 2 \end{vmatrix} \] Calculating the minors: 1. For \(\hat{i}\): \[ = \hat{i} (3 \cdot -4 - (-1) \cdot 2) = \hat{i} (-12 + 2) = -10\hat{i} \] 2. For \(\hat{j}\): \[ = -\hat{j} (2 \cdot -4 - (-1) \cdot -1) = -\hat{j} (-8 - 1) = 9\hat{j} \] 3. For \(\hat{k}\): \[ = \hat{k} (2 \cdot 2 - 3 \cdot -1) = \hat{k} (4 + 3) = 7\hat{k} \] Thus, \[ \vec{\alpha} \times \vec{\beta} = -10\hat{i} + 9\hat{j} + 7\hat{k} \] ### Step 2: Calculate \(\vec{\alpha} \times \vec{\gamma}\) Next, we calculate \(\vec{\alpha} \times \vec{\gamma}\): \[ \vec{\alpha} \times \vec{\gamma} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & -1 \\ 1 & 1 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 3 & -1 \\ 1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} \] Calculating the minors: 1. For \(\hat{i}\): \[ = \hat{i} (3 \cdot 1 - (-1) \cdot 1) = \hat{i} (3 + 1) = 4\hat{i} \] 2. For \(\hat{j}\): \[ = -\hat{j} (2 \cdot 1 - (-1) \cdot 1) = -\hat{j} (2 + 1) = -3\hat{j} \] 3. For \(\hat{k}\): \[ = \hat{k} (2 \cdot 1 - 3 \cdot 1) = \hat{k} (2 - 3) = -\hat{k} \] Thus, \[ \vec{\alpha} \times \vec{\gamma} = 4\hat{i} - 3\hat{j} - \hat{k} \] ### Step 3: Calculate the dot product Now we compute the dot product: \[ (\vec{\alpha} \times \vec{\beta}) \cdot (\vec{\alpha} \times \vec{\gamma}) = (-10\hat{i} + 9\hat{j} + 7\hat{k}) \cdot (4\hat{i} - 3\hat{j} - \hat{k}) \] Calculating the dot product: \[ = (-10) \cdot 4 + 9 \cdot (-3) + 7 \cdot (-1) \] \[ = -40 - 27 - 7 \] \[ = -74 \] ### Final Answer Thus, the result of \((\vec{\alpha} \times \vec{\beta}) \cdot (\vec{\alpha} \times \vec{\gamma})\) is: \[ \boxed{-74} \]

To solve the problem, we need to find the scalar product of two cross products of vectors \(\vec{\alpha}\), \(\vec{\beta}\), and \(\vec{\gamma}\). The vectors are given as follows: \[ \vec{\alpha} = 2\hat{i} + 3\hat{j} - \hat{k} \] \[ \vec{\beta} = -\hat{i} + 2\hat{j} - 4\hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

Let a be a real number and vec alpha = hati +2hatj, vec beta=2hati+a hatj+10 hatk, vec gamma=12hati+20hatj+a hatk be three vectors, then vec alpha, vec beta and vec gamma are linearly independent for :

If veca=2hati + hatj+ hatk, vecb= hati+ 2hatj + 2hatk,vecc = hati+ hatj + 2hatk and (1 + alpha) hati+ beta(1+ alpha)hatj+gamma(1+alpha)(1 + beta) hatk= vecaxx(vecb xx vecc) , " then " alpha, beta and gamma " are "

If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(gamma)=chati+ahatj+bhatk be three coplnar vectors with a!=b , and vecv=hati+hatj+hatk . Then vecv is perpendicular to

Let vec(alpha)=ahati+bhatj+chatk, vec(beta)=bhati+chatj+ahatk and vec(gamma)=chati+ahatj+bhatk be three coplnar vectors with a!=b , and vecv=hati+hatj+hatk . Then vecv is perpendicular to

If vec(OA)=2hati-hatj+hatk, vec(OB)=hati-3hatj-5hatk and vec(OC)=3hati-3hatj-3hatk then show that CB is perpendicular to AC.

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

vecr=3hati+2hatj-5hatk, veca=2hati-hatj+hatk, vecb=hati+3hatj-2hatk, vecc=-2hati+hatj-3hatk such that vecr=lambdaveca+muvecb+gammavecc , then

If veca=2i-hatj+hatk, vecb=hati+3hatj-hatk, vec c=-2hati+hatj-3hatk and vecd= 3hati+2hatj+5hatk, find the scalars alpha, beta and gamma such that vecd=alphaveca+betavecb+gamma vecc

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Section I - Solved Mcqs
  1. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  2. If a and b are unit vectors, then the vector defined as V=(a+b)times(a...

    Text Solution

    |

  3. If vec(alpha)=2hati+3hatj-hatk, vec(beta)=-hati+2hatj-4hatk, vecgamma=...

    Text Solution

    |

  4. Let alpha = a hati + b hatj + chatk , vecbeta = bhati + chatj + ahatk ...

    Text Solution

    |

  5. Given |veca|=|vecb|=1 and |veca + vecb|= sqrt3 if vecc is a vector suc...

    Text Solution

    |

  6. If vecmu and vecv be unit vector. If vecv is a vector such that vecv +...

    Text Solution

    |

  7. If veca, vecb, vecc be three vectors of magnitude sqrt(3),1,2 such tha...

    Text Solution

    |

  8. If veca bot vecb then vector vecv in terms of veca and vecb satisfying...

    Text Solution

    |

  9. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  10. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  11. If vecA , vecB and vecC are vectors such that |vecB| = |vecC| prove th...

    Text Solution

    |

  12. If the magnitude of the moment about the pont hatj+hatk of a force hat...

    Text Solution

    |

  13. If the volume of parallelopiped formed by the vectors a,b,c as three c...

    Text Solution

    |

  14. If |veca|=5, |vecb|=3, |vecc|=4 and veca is perpendicular to vecb and ...

    Text Solution

    |

  15. If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (...

    Text Solution

    |

  16. Prove that (veca.(vecbxxhati))hati+(veca.(vecbxxhatj))hatj+ (veca.(vec...

    Text Solution

    |

  17. The unit vector which is orhtogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |

  18. Let veca, vecb and vecc be non-zero vectors such that (veca xx vecb) x...

    Text Solution

    |

  19. vecp, vecq and vecr are three mutually prependicular vectors of the sa...

    Text Solution

    |

  20. If veca and vecb are vectors in space given by veca= (hati-2hatj)/sqrt...

    Text Solution

    |