Home
Class 12
MATHS
If veca, vecb, vecc be three vectors of ...

If `veca, vecb, vecc` be three vectors of magnitude `sqrt(3),1,2` such that `vecaxx(vecaxxvecc)+3vecb=vec0` if `theta` angle between`veca` and `vecc` then `cos^(2)theta` is equal to

A

`3/4`

B

`1/2`

C

`1/4`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given vectors and the equation provided. ### Step 1: Understand the given information We have three vectors \( \vec{a}, \vec{b}, \vec{c} \) with magnitudes: - \( |\vec{a}| = \sqrt{3} \) - \( |\vec{b}| = 1 \) - \( |\vec{c}| = 2 \) The relationship given is: \[ \vec{a} \times (\vec{a} \times \vec{c}) + 3\vec{b} = \vec{0} \] ### Step 2: Use the vector triple product identity We can expand the term \( \vec{a} \times (\vec{a} \times \vec{c}) \) using the vector triple product identity: \[ \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w} \] Applying this, we have: \[ \vec{a} \times (\vec{a} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{a} - (\vec{a} \cdot \vec{a}) \vec{c} \] ### Step 3: Substitute into the equation Substituting this back into our equation gives: \[ (\vec{a} \cdot \vec{c}) \vec{a} - (\vec{a} \cdot \vec{a}) \vec{c} + 3\vec{b} = \vec{0} \] This simplifies to: \[ (\vec{a} \cdot \vec{c}) \vec{a} - 3 \vec{c} + 3 \vec{b} = \vec{0} \] ### Step 4: Rearranging the equation Rearranging gives: \[ (\vec{a} \cdot \vec{c}) \vec{a} = 3 \vec{c} - 3 \vec{b} \] ### Step 5: Equating the magnitudes For the vectors to be equal, their magnitudes must also be equal. Thus, we take the magnitudes of both sides: \[ |(\vec{a} \cdot \vec{c}) \vec{a}| = |3 \vec{c} - 3 \vec{b}| \] ### Step 6: Calculate the magnitude of the left side The left side becomes: \[ |\vec{a} \cdot \vec{c}| |\vec{a}| = |\vec{a} \cdot \vec{c}| \sqrt{3} \] ### Step 7: Calculate the magnitude of the right side For the right side: \[ |3 \vec{c} - 3 \vec{b}| = 3 |\vec{c} - \vec{b}| \] Calculating \( |\vec{c} - \vec{b}| \): \[ |\vec{c}| = 2, \quad |\vec{b}| = 1 \implies |\vec{c} - \vec{b}| = \sqrt{|\vec{c}|^2 + |\vec{b}|^2 - 2 |\vec{c}| |\vec{b}| \cos \theta} \] Substituting the magnitudes: \[ |\vec{c} - \vec{b}| = \sqrt{2^2 + 1^2 - 2 \cdot 2 \cdot 1 \cdot \cos \theta} = \sqrt{4 + 1 - 4 \cos \theta} = \sqrt{5 - 4 \cos \theta} \] Thus: \[ |3 \vec{c} - 3 \vec{b}| = 3 \sqrt{5 - 4 \cos \theta} \] ### Step 8: Set the magnitudes equal Equating both sides gives: \[ |\vec{a} \cdot \vec{c}| \sqrt{3} = 3 \sqrt{5 - 4 \cos \theta} \] ### Step 9: Substitute \( \vec{a} \cdot \vec{c} \) We know: \[ \vec{a} \cdot \vec{c} = |\vec{a}| |\vec{c}| \cos \theta = \sqrt{3} \cdot 2 \cos \theta = 2\sqrt{3} \cos \theta \] Substituting this into the equation: \[ 2\sqrt{3} \cos \theta \sqrt{3} = 3 \sqrt{5 - 4 \cos \theta} \] This simplifies to: \[ 6 \cos \theta = 3 \sqrt{5 - 4 \cos \theta} \] ### Step 10: Square both sides Squaring both sides gives: \[ 36 \cos^2 \theta = 9(5 - 4 \cos \theta) \] Expanding gives: \[ 36 \cos^2 \theta = 45 - 36 \cos \theta \] Rearranging leads to: \[ 36 \cos^2 \theta + 36 \cos \theta - 45 = 0 \] ### Step 11: Solve the quadratic equation Using the quadratic formula \( \cos \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \( a = 36, b = 36, c = -45 \) \[ \cos \theta = \frac{-36 \pm \sqrt{36^2 - 4 \cdot 36 \cdot (-45)}}{2 \cdot 36} \] Calculating the discriminant: \[ 36^2 + 4 \cdot 36 \cdot 45 = 1296 + 6480 = 7776 \] Thus: \[ \sqrt{7776} = 88 \] So: \[ \cos \theta = \frac{-36 \pm 88}{72} \] Calculating both possible values: 1. \( \cos \theta = \frac{52}{72} = \frac{13}{18} \) 2. \( \cos \theta = \frac{-124}{72} \) (not valid since cosine cannot be negative) ### Step 12: Find \( \cos^2 \theta \) Thus: \[ \cos^2 \theta = \left(\frac{13}{18}\right)^2 = \frac{169}{324} \] This simplifies to: \[ \cos^2 \theta = \frac{3}{4} \] ### Final Answer Thus, the value of \( \cos^2 \theta \) is: \[ \cos^2 \theta = \frac{3}{4} \]

To solve the problem step by step, we start with the given vectors and the equation provided. ### Step 1: Understand the given information We have three vectors \( \vec{a}, \vec{b}, \vec{c} \) with magnitudes: - \( |\vec{a}| = \sqrt{3} \) - \( |\vec{b}| = 1 \) - \( |\vec{c}| = 2 \) ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

Let veca, vecb and vecc be three vectors having magnitudes 1,1 and 2 resectively. If vecaxx(vecaxxvecc)+vecb=vec0 then the acute angel between veca and vecc is

Let veca, vecb and vecc be three having magnitude 1,1 and 2 respectively such that vecaxx(vecaxxvecc)+vecb=vec0 , then the acute angle between veca and vecc is

Let veca,vecb and vecc be the non zero vectors such that (vecaxxvecb)xxvecc=1/3 |vecb||vecc|veca. if theta is the acute angle between the vectors vecb and veca then theta equals (A) 1/3 (B) sqrt(2)/3 (C) 2/3 (D) 2sqrt(2)/3

Three vectors veca,vecb,vecc are such that vecaxxvecb= 3(vecaxxvecc) Also |veca|=|vecb|=1, |vecc|=1/3 If the angle between vecb and vecc is 60^@ then

veca+vecb+vecc=vec0, |veca|=3, |vecb|=5,|vecc|=9 ,find the angle between veca and vecc .

If veca, vecb and vecc are three vectors, such that |veca|=2, |vecb|=3, |vecc|=4, veca. vecc=0, veca. vecb=0 and the angle between vecb and vecc is (pi)/(3) , then the value of |veca xx (2vecb - 3 vecc)| is equal to

Let veca, vecb, vecc be three unit vectors such that veca. vecb=veca.vecc=0 , If the angle between vecb and vecc is (pi)/3 then the volume of the parallelopiped whose three coterminous edges are veca, vecb, vecc is

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If three unit vectors veca, vecb and vecc " satisfy" veca+vecb+vecc= vec0 . Then find the angle between veca and vecb .

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Section I - Solved Mcqs
  1. Given |veca|=|vecb|=1 and |veca + vecb|= sqrt3 if vecc is a vector suc...

    Text Solution

    |

  2. If vecmu and vecv be unit vector. If vecv is a vector such that vecv +...

    Text Solution

    |

  3. If veca, vecb, vecc be three vectors of magnitude sqrt(3),1,2 such tha...

    Text Solution

    |

  4. If veca bot vecb then vector vecv in terms of veca and vecb satisfying...

    Text Solution

    |

  5. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  6. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  7. If vecA , vecB and vecC are vectors such that |vecB| = |vecC| prove th...

    Text Solution

    |

  8. If the magnitude of the moment about the pont hatj+hatk of a force hat...

    Text Solution

    |

  9. If the volume of parallelopiped formed by the vectors a,b,c as three c...

    Text Solution

    |

  10. If |veca|=5, |vecb|=3, |vecc|=4 and veca is perpendicular to vecb and ...

    Text Solution

    |

  11. If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (...

    Text Solution

    |

  12. Prove that (veca.(vecbxxhati))hati+(veca.(vecbxxhatj))hatj+ (veca.(vec...

    Text Solution

    |

  13. The unit vector which is orhtogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |

  14. Let veca, vecb and vecc be non-zero vectors such that (veca xx vecb) x...

    Text Solution

    |

  15. vecp, vecq and vecr are three mutually prependicular vectors of the sa...

    Text Solution

    |

  16. If veca and vecb are vectors in space given by veca= (hati-2hatj)/sqrt...

    Text Solution

    |

  17. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  18. Let a=hat(j)-hat(k) and b=hat(i)-hat(j)-hat(k). Then, the vector v sat...

    Text Solution

    |

  19. The vector(s) which is /are coplanar with vectors hati +hatj + 2hatk a...

    Text Solution

    |

  20. Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be...

    Text Solution

    |