Home
Class 12
MATHS
If veca=hati-2hatj+3hatk, vecb=2hati+3ha...

If `veca=hati-2hatj+3hatk, vecb=2hati+3hatj-hatk` and `vecc=rhati+hatj+(2r-1)hatk` are three vectors such that `vecc` is parallel to the plane of `veca` and `vecb` then`r` is equal to,

A

`1`

B

`0`

C

`2`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( r \) such that the vector \( \vec{c} \) is parallel to the plane formed by the vectors \( \vec{a} \) and \( \vec{b} \). This can be determined by ensuring that the dot product of \( \vec{c} \) with the cross product of \( \vec{a} \) and \( \vec{b} \) is zero. ### Step-by-Step Solution: 1. **Define the vectors**: \[ \vec{a} = \hat{i} - 2\hat{j} + 3\hat{k} \] \[ \vec{b} = 2\hat{i} + 3\hat{j} - \hat{k} \] \[ \vec{c} = r\hat{i} + \hat{j} + (2r - 1)\hat{k} \] 2. **Calculate the cross product \( \vec{a} \times \vec{b} \)**: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 3 \\ 2 & 3 & -1 \end{vmatrix} \] Expanding this determinant: \[ = \hat{i} \begin{vmatrix} -2 & 3 \\ 3 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 3 \\ 2 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -2 \\ 2 & 3 \end{vmatrix} \] Calculating the minors: \[ = \hat{i}((-2)(-1) - (3)(3)) - \hat{j}((1)(-1) - (3)(2)) + \hat{k}((1)(3) - (-2)(2)) \] \[ = \hat{i}(2 - 9) - \hat{j}(-1 - 6) + \hat{k}(3 + 4) \] \[ = -7\hat{i} + 7\hat{j} + 7\hat{k} \] Thus, \[ \vec{a} \times \vec{b} = -7\hat{i} + 7\hat{j} + 7\hat{k} \] 3. **Set up the dot product \( \vec{c} \cdot (\vec{a} \times \vec{b}) = 0 \)**: \[ \vec{c} \cdot (\vec{a} \times \vec{b}) = (r\hat{i} + \hat{j} + (2r - 1)\hat{k}) \cdot (-7\hat{i} + 7\hat{j} + 7\hat{k}) \] Calculating the dot product: \[ = r(-7) + 1(7) + (2r - 1)(7) \] \[ = -7r + 7 + 14r - 7 \] \[ = 7r \] 4. **Set the equation to zero**: \[ 7r = 0 \] 5. **Solve for \( r \)**: \[ r = 0 \] ### Final Answer: Thus, the value of \( r \) is \( \boxed{0} \).

To solve the problem, we need to find the value of \( r \) such that the vector \( \vec{c} \) is parallel to the plane formed by the vectors \( \vec{a} \) and \( \vec{b} \). This can be determined by ensuring that the dot product of \( \vec{c} \) with the cross product of \( \vec{a} \) and \( \vec{b} \) is zero. ### Step-by-Step Solution: 1. **Define the vectors**: \[ \vec{a} = \hat{i} - 2\hat{j} + 3\hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

Let veca=hati+hatj+hatk, vecb=hati-hatj+hat2k and vecc=xhati+(x-2)hatj-hatk . If the vector vecc lies in the plane of veca and vecb then x equals

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3c .

Let veca=2hati+hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the plane of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Section I - Solved Mcqs
  1. If veca bot vecb then vector vecv in terms of veca and vecb satisfying...

    Text Solution

    |

  2. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  3. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  4. If vecA , vecB and vecC are vectors such that |vecB| = |vecC| prove th...

    Text Solution

    |

  5. If the magnitude of the moment about the pont hatj+hatk of a force hat...

    Text Solution

    |

  6. If the volume of parallelopiped formed by the vectors a,b,c as three c...

    Text Solution

    |

  7. If |veca|=5, |vecb|=3, |vecc|=4 and veca is perpendicular to vecb and ...

    Text Solution

    |

  8. If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (...

    Text Solution

    |

  9. Prove that (veca.(vecbxxhati))hati+(veca.(vecbxxhatj))hatj+ (veca.(vec...

    Text Solution

    |

  10. The unit vector which is orhtogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |

  11. Let veca, vecb and vecc be non-zero vectors such that (veca xx vecb) x...

    Text Solution

    |

  12. vecp, vecq and vecr are three mutually prependicular vectors of the sa...

    Text Solution

    |

  13. If veca and vecb are vectors in space given by veca= (hati-2hatj)/sqrt...

    Text Solution

    |

  14. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  15. Let a=hat(j)-hat(k) and b=hat(i)-hat(j)-hat(k). Then, the vector v sat...

    Text Solution

    |

  16. The vector(s) which is /are coplanar with vectors hati +hatj + 2hatk a...

    Text Solution

    |

  17. Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be...

    Text Solution

    |

  18. veca =1/sqrt(10)(3hati + hatk) and vecb =1/7(2hati +3hatj-6hatk), then...

    Text Solution

    |

  19. If veca=hati-2hatj+3hatk, vecb=2hati+3hatj-hatk and vecc=rhati+hatj+(2...

    Text Solution

    |

  20. If veca, vecb are non zero vectors, then ((vecaxxvecb)xxveca).((vecbxx...

    Text Solution

    |