Home
Class 12
MATHS
Statement 1: Any vector in space can be ...

Statement 1: Any vector in space can be uniquely written as the linear combination of three non-coplanar vectors.
Stetement 2: If `veca, vecb, vecc` are three non-coplanar vectors and `vecr` is any vector in space then
`[(veca,vecb, vecc)]vecc+[(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb=[(veca, vecb, vecc)]vecr`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze both statements and provide a step-by-step explanation. ### Step 1: Analyze Statement 1 **Statement 1:** Any vector in space can be uniquely written as the linear combination of three non-coplanar vectors. **Explanation:** - Let \(\vec{r}\) be any vector in space. - If \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are three non-coplanar vectors, then any vector \(\vec{r}\) can be expressed as: \[ \vec{r} = x \vec{a} + y \vec{b} + z \vec{c} \] where \(x\), \(y\), and \(z\) are scalars. - Since \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are non-coplanar, they span a three-dimensional space, allowing for a unique representation of \(\vec{r}\). **Conclusion:** - Therefore, Statement 1 is **True**. ### Step 2: Analyze Statement 2 **Statement 2:** If \(\vec{a}, \vec{b}, \vec{c}\) are three non-coplanar vectors and \(\vec{r}\) is any vector in space, then: \[ [(\vec{a}, \vec{b}, \vec{c})]\vec{c} + [(\vec{b}, \vec{c}, \vec{r})]\vec{a} + [(\vec{c}, \vec{a}, \vec{r})]\vec{b} = [(\vec{a}, \vec{b}, \vec{c})]\vec{r} \] **Explanation:** 1. **Understanding the Notation:** - The notation \([\vec{a}, \vec{b}, \vec{c}]\) represents the scalar triple product, which gives the volume of the parallelepiped formed by the vectors. 2. **Finding the Components:** - We can express \(\vec{r}\) in terms of the basis formed by \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\): \[ \vec{r} = x \vec{a} + y \vec{b} + z \vec{c} \] - We will find the coefficients \(x\), \(y\), and \(z\) using the scalar triple product. 3. **Calculating Each Term:** - Calculate \((\vec{b} \times \vec{c}) \cdot \vec{r}\) to find \(x\): \[ x = \frac{(\vec{b} \times \vec{c}) \cdot \vec{r}}{(\vec{a} \times \vec{b}) \cdot \vec{c}} \] - Calculate \((\vec{c} \times \vec{a}) \cdot \vec{r}\) to find \(y\): \[ y = \frac{(\vec{c} \times \vec{a}) \cdot \vec{r}}{(\vec{a} \times \vec{b}) \cdot \vec{c}} \] - Calculate \((\vec{a} \times \vec{b}) \cdot \vec{r}\) to find \(z\): \[ z = \frac{(\vec{a} \times \vec{b}) \cdot \vec{r}}{(\vec{a} \times \vec{b}) \cdot \vec{c}} \] 4. **Substituting Back:** - Substitute \(x\), \(y\), and \(z\) back into the equation to verify the equality: \[ \vec{r} = \frac{(\vec{b} \times \vec{c}) \cdot \vec{r}}{(\vec{a} \times \vec{b}) \cdot \vec{c}} \vec{a} + \frac{(\vec{c} \times \vec{a}) \cdot \vec{r}}{(\vec{a} \times \vec{b}) \cdot \vec{c}} \vec{b} + \frac{(\vec{a} \times \vec{b}) \cdot \vec{r}}{(\vec{a} \times \vec{b}) \cdot \vec{c}} \vec{c} \] **Conclusion:** - Thus, Statement 2 is also **True**. ### Final Conclusion Both Statement 1 and Statement 2 are true, and Statement 1 serves as the explanation for Statement 2. ---

To solve the given problem, we need to analyze both statements and provide a step-by-step explanation. ### Step 1: Analyze Statement 1 **Statement 1:** Any vector in space can be uniquely written as the linear combination of three non-coplanar vectors. **Explanation:** - Let \(\vec{r}\) be any vector in space. - If \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are three non-coplanar vectors, then any vector \(\vec{r}\) can be expressed as: ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)=

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

Statement 1: Let vecr be any vector in space. Then, vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk Statement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then vecr={([(vecr, vecb, vecc)])/([(veca, vecb, vecc)])}veca+{([(vecr, vecc, veca)])/([(veca, vecb, vecc)])}vecb+{([(vecr, veca, vecb)])/([(veca, vecb, vecc)])}vecc

vec a , vec ba n d vec c are three non-coplanar ,non-zero vectors and vec r is any vector in space, then ( veca × vecb )×( vecr × vecc )+( vecb × vecc )×( vecr × veca )+( vecc × veca )×( vecr × vecb ) is equal to

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are non coplanar non null vectors such that [(veca, vecb, vecc)]=2 then {[(vecaxxvecb, vecbxxvecc, veccxxveca)]}^(2)=

If veca, vecb, vecc are non coplanar vectors and lamda is a real number, then [(lamda(veca+vecb), lamda^(2)vecb, lamdavecc)]=[(veca, vecb+vecc,vecb)] for

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: 8vecb+6vecc, veca+vecb+vecc, 2veca-vecb+vecc, veca-vecb-vecc