Home
Class 12
MATHS
Let the vectors vec(PQ),vec(QR),vec(RS),...

Let the vectors `vec(PQ),vec(QR),vec(RS), vec(ST), vec(TU)` and `vec(UP)` represent the sides of a regular hexagon.
Statement I:`vec(PQ) xx (vec(RS) + vec(ST)) ne vec0`
Statement II: `vec(PQ) xx vec(RS) = vec0` and `vec(PQ) xx vec(RS) = vec0` and `vec(PQ) xx vec(ST) ne vec0`
For the following question, choose the correct answer from the codes (A), (B) , (C) and (D) defined as follows:

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
C

Clearly, `vec(RS)+vec(ST)=vec(RT)` which is not parallel to `vec(PQ)`
`:.vec(PQ)xx(vec(RS)+vec(ST))!=vec0`
So statement -1 is true.
Also, `vec(PQ)` is not parallel to `vec(RS)`

`:.PQxxvec(RS)!=vec0`
So, statement -2 is not true.
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|64 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

What is the angle be vec(a) xx vec(b) and vec(b) xx vec(a) ?

Find vec(a) * vec(b) if |vec(a)| = 6, |vec(b)| = 4 and |vec(a) xx vec(b)| = 12

If vec(A)+vec(B)+vec(C )=0 then vec(A)xx vec(B) is

If vec(a).vec(b)=0 and vec(a) xx vec(b)=0, " prove that " vec(a)= vec(0) or vec(b)=vec(0) .

If veca , vec b and vec c represents three sides of a triangle taken in order prove that veca xx vec b = vec b xx vec c = vec c xx vec a

Prove that ( vec(A) + vec(B)) xx ( vec(A) - vec(B)) = 2 (vec(B) xx vec(A))

Given that vec(A) xx vec(B) = 0 , vec(B) xx vec(C ) = 0 , find the value of vec(A) xx vec(C ) " if " vec (A) != 0 , vec(B ) != 0 , vec(B) != 0 and vec(C ) != 0

Prove that vec(a). {(vec(b) + vec(c)) xx (vec(a) + 2vec(b) + 3vec(c))} = [vec(a) vec(b) vec(c)] .

If vec( a) , vec( b) , vec( c ) are non coplanar non-zero vectors such that vec( b) xxvec( c) = vec( a ), vec( a ) xx vec( b) =vec( c ) and vec( c ) xx vec( a ) = vec ( b ) , then which of the following is not true

Prove that vec(a)[(vec(b) + vec(c)) xx (vec(a) + 3vec(b) + 4vec(c))] = [ vec(a) vec(b) vec(c)]