Home
Class 12
MATHS
Let veca=hati+hatj-hatk, vecb=hati-hatj+...

Let `veca=hati+hatj-hatk, vecb=hati-hatj+hatk` and `vecc` be a unit vector perpendicular to `veca` and coplanar with `veca` and `vecb`, then it is given by

A

`1/(sqrt(6))(2hati-hatj+hatjk)`

B

`1/(sqrt(2))(hatj+hatk)`

C

`1/(sqrt(6))(hati-2hatj+hatk)`

D

`1/2(hatj-hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a unit vector \( \vec{c} \) that is perpendicular to \( \vec{a} \) and coplanar with \( \vec{a} \) and \( \vec{b} \). Given: \[ \vec{a} = \hat{i} + \hat{j} - \hat{k} \] \[ \vec{b} = \hat{i} - \hat{j} + \hat{k} \] ### Step 1: Define the vector \( \vec{c} \) Let \( \vec{c} = x \hat{i} + y \hat{j} + z \hat{k} \). ### Step 2: Use the condition of perpendicularity Since \( \vec{c} \) is perpendicular to \( \vec{a} \), we have: \[ \vec{c} \cdot \vec{a} = 0 \] Calculating the dot product: \[ (x \hat{i} + y \hat{j} + z \hat{k}) \cdot (\hat{i} + \hat{j} - \hat{k}) = x + y - z = 0 \] This gives us our first equation: \[ x + y - z = 0 \quad \text{(1)} \] ### Step 3: Use the condition of coplanarity Since \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) are coplanar, the scalar triple product must be zero: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = 0 \] Using the determinant method, we can express this as: \[ \begin{vmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ x & y & z \end{vmatrix} = 0 \] Calculating the determinant: \[ 1 \cdot \begin{vmatrix} -1 & 1 \\ y & z \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 1 \\ x & z \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & -1 \\ x & y \end{vmatrix} = 0 \] Expanding this: \[ (-1)(z) - (1)(z - x) - (1)(y + x) = 0 \] This simplifies to: \[ -z - z + x - y - x = 0 \] Thus, we have: \[ -2z + y = 0 \quad \text{(2)} \] ### Step 4: Solve the equations From equation (2), we can express \( y \) in terms of \( z \): \[ y = 2z \] Substituting \( y = 2z \) into equation (1): \[ x + 2z - z = 0 \] This simplifies to: \[ x + z = 0 \implies x = -z \] ### Step 5: Express \( \vec{c} \) in terms of \( z \) Now we can express \( \vec{c} \): \[ \vec{c} = -z \hat{i} + 2z \hat{j} + z \hat{k} = z(-\hat{i} + 2\hat{j} + \hat{k}) \] ### Step 6: Normalize \( \vec{c} \) to make it a unit vector To make \( \vec{c} \) a unit vector, we need to find the magnitude: \[ \|\vec{c}\| = z \sqrt{(-1)^2 + 2^2 + 1^2} = z \sqrt{1 + 4 + 1} = z \sqrt{6} \] Setting this equal to 1 for a unit vector: \[ z \sqrt{6} = 1 \implies z = \frac{1}{\sqrt{6}} \] ### Step 7: Substitute \( z \) back to find \( \vec{c} \) Substituting \( z \) back into \( \vec{c} \): \[ \vec{c} = \frac{1}{\sqrt{6}} \left(-\hat{i} + 2\hat{j} + \hat{k}\right) \] Thus, the required unit vector \( \vec{c} \) is: \[ \vec{c} = \frac{1}{\sqrt{6}} (-\hat{i} + 2\hat{j} + \hat{k}) \]

To solve the problem, we need to find a unit vector \( \vec{c} \) that is perpendicular to \( \vec{a} \) and coplanar with \( \vec{a} \) and \( \vec{b} \). Given: \[ \vec{a} = \hat{i} + \hat{j} - \hat{k} \] \[ \vec{b} = \hat{i} - \hat{j} + \hat{k} ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vector bot to the vector veca and coplanar with veca and vecb , then a unit vector vecd is perpendicular to both veca and vecc is:

Let veca=hati+hatj-hatk and vecb=2hati-hatj+hatk . If vecc is a non - zero vector perpendicular to both veca and vecb , such that its component along x, y, z axes are rational numbers, then |vecc| is

If veca=hati+2hatj-hatk and vecb=3hati+hatj-hatk find a unit vector int direction of veca-vecb .

If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

Let veca=hati+hatj+hatk, vecb=hati-hatj+hat2k and vecc=xhati+(x-2)hatj-hatk . If the vector vecc lies in the plane of veca and vecb then x equals

If veca=2hati-hatj+hatk and vecb=3hati+4hatj-hatk , prove that vecaxxvecb represents a vector which perpendicular to both veca and vecb .

Let veca=hati+3hatj+7hatk and vecb=7hati-hatj+8hatk find the projection of vecb on veca

If veca=hati+hatj, vecb=hatj+hatk, vec c hatk+hati , a unit vector parallel to veca+vecb+vecc .

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3c .

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  2. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  3. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  4. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  5. If veca , vecb , vecc are three mutually perpendicular unit ve...

    Text Solution

    |

  6. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  7. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  8. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  9. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  10. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  11. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  12. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  13. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  14. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  15. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  16. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  17. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  18. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  19. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  20. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |