Home
Class 12
MATHS
The value of [(veca-vecb, vecb-vecc, vec...

The value of `[(veca-vecb, vecb-vecc, vecc-veca)]`, where `|veca|=1, |vecb|=5, |vecc|=3`, is

A

`0`

B

`1`

C

`6`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \([( \vec{a} - \vec{b}, \vec{b} - \vec{c}, \vec{c} - \vec{a})]\), where \(|\vec{a}| = 1\), \(|\vec{b}| = 5\), and \(|\vec{c}| = 3\), we will use the properties of the scalar triple product. ### Step-by-Step Solution: 1. **Understanding the Scalar Triple Product**: The scalar triple product of three vectors \(\vec{u}, \vec{v}, \vec{w}\) is defined as: \[ [\vec{u}, \vec{v}, \vec{w}] = \vec{u} \cdot (\vec{v} \times \vec{w}) \] In our case, we need to evaluate: \[ [\vec{a} - \vec{b}, \vec{b} - \vec{c}, \vec{c} - \vec{a}] \] 2. **Expanding the Scalar Triple Product**: We can express the scalar triple product as: \[ [\vec{a} - \vec{b}, \vec{b} - \vec{c}, \vec{c} - \vec{a}] = (\vec{a} - \vec{b}) \cdot ((\vec{b} - \vec{c}) \times (\vec{c} - \vec{a})) \] 3. **Using Properties of Cross Product**: We can expand the cross product: \[ (\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) = \vec{b} \times \vec{c} - \vec{b} \times \vec{a} - \vec{c} \times \vec{c} + \vec{c} \times \vec{a} \] Since \(\vec{c} \times \vec{c} = \vec{0}\), we have: \[ (\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) = \vec{b} \times \vec{c} - \vec{b} \times \vec{a} + \vec{c} \times \vec{a} \] 4. **Substituting Back**: Substitute this back into the scalar triple product: \[ [\vec{a} - \vec{b}, \vec{b} - \vec{c}, \vec{c} - \vec{a}] = (\vec{a} - \vec{b}) \cdot (\vec{b} \times \vec{c} - \vec{b} \times \vec{a} + \vec{c} \times \vec{a}) \] 5. **Distributing the Dot Product**: Now, distribute the dot product: \[ = (\vec{a} - \vec{b}) \cdot (\vec{b} \times \vec{c}) - (\vec{a} - \vec{b}) \cdot (\vec{b} \times \vec{a}) + (\vec{a} - \vec{b}) \cdot (\vec{c} \times \vec{a}) \] 6. **Evaluating Each Term**: - The term \((\vec{a} - \vec{b}) \cdot (\vec{b} \times \vec{c})\) remains. - The term \((\vec{a} - \vec{b}) \cdot (\vec{b} \times \vec{a})\) is zero because \(\vec{b} \times \vec{a}\) is perpendicular to both \(\vec{a}\) and \(\vec{b}\). - The term \((\vec{a} - \vec{b}) \cdot (\vec{c} \times \vec{a})\) is also zero for the same reason. 7. **Final Result**: After simplifying, we find that all terms cancel out, leading to: \[ [\vec{a} - \vec{b}, \vec{b} - \vec{c}, \vec{c} - \vec{a}] = 0 \] ### Conclusion: Thus, the value of \([( \vec{a} - \vec{b}, \vec{b} - \vec{c}, \vec{c} - \vec{a})]\) is **0**.

To solve the problem of finding the value of \([( \vec{a} - \vec{b}, \vec{b} - \vec{c}, \vec{c} - \vec{a})]\), where \(|\vec{a}| = 1\), \(|\vec{b}| = 5\), and \(|\vec{c}| = 3\), we will use the properties of the scalar triple product. ### Step-by-Step Solution: 1. **Understanding the Scalar Triple Product**: The scalar triple product of three vectors \(\vec{u}, \vec{v}, \vec{w}\) is defined as: \[ [\vec{u}, \vec{v}, \vec{w}] = \vec{u} \cdot (\vec{v} \times \vec{w}) ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

The value of veca.(vecb+vecc)xx(veca+vecb+vecc) , is

Prove that [ veca+ vecb , vecb+ vecc , vecc+ veca]=2[ veca , vecb , vecc] .

Three vectors veca , vecb and vecc satisfy the condition veca+ vecb+ vecc= vec0 . Evaluate the quantity mu= veca* vecb+vecb* vecc+vecc* veca , if | veca|=3,| vecb|=4 and |vecc|=2 .

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

Prove that [veca+vecb,vecb+vecc,vecc+veca]=2[veca vecb vecc]

Let veca , vecb,vecc be three vectors such that veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 , |vecc| =3 , " then " | veca + vecb + vecc| is,

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc + vecc.veca is equal to

Let veca,vecb, vecc be any three vectors, Statement 1: [(veca+vecb, vecb+vecc,vecc+veca)]=2[(veca, vecb, vecc)] Statement 2: [(vecaxxvecb, vecbxxvecc, veccxxveca)]=[(veca, vecb, vecc)]^(2)

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  2. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  3. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  4. If veca , vecb , vecc are three mutually perpendicular unit ve...

    Text Solution

    |

  5. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  6. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  7. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  8. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  9. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  10. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  11. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  12. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  13. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  14. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  15. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  16. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  17. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  18. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  19. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |

  20. If veca,vecb and vecc are non coplanar and unit vectors such that veca...

    Text Solution

    |