Home
Class 12
MATHS
For any vectors vecr the value of hati...

For any vectors `vecr` the value of
`hatixx(vecrxxhati)+hatjxx(vecrxxhatj)+hatkxx(vecrxxhatk)`, is

A

`vec0`

B

`2vecr`

C

`-2vecr`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \hat{i} \times (\vec{r} \times \hat{i}) + \hat{j} \times (\vec{r} \times \hat{j}) + \hat{k} \times (\vec{r} \times \hat{k}) \] where \(\vec{r}\) is any vector. ### Step 1: Use the Vector Triple Product Identity We will use the vector triple product identity, which states that: \[ \vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} (\vec{a} \cdot \vec{c}) - \vec{c} (\vec{a} \cdot \vec{b}) \] In our case, we can apply this identity to each term in the expression. ### Step 2: Evaluate Each Term 1. For the first term \(\hat{i} \times (\vec{r} \times \hat{i})\): \[ \hat{i} \times (\vec{r} \times \hat{i}) = \hat{i} (\hat{i} \cdot \hat{i}) - \hat{i} (\vec{r} \cdot \hat{i}) = \hat{i} \cdot 1 - \hat{i} (x) = \hat{i} - x \hat{i} = (1 - x) \hat{i} \] 2. For the second term \(\hat{j} \times (\vec{r} \times \hat{j})\): \[ \hat{j} \times (\vec{r} \times \hat{j}) = \hat{j} (\hat{j} \cdot \hat{j}) - \hat{j} (\vec{r} \cdot \hat{j}) = \hat{j} \cdot 1 - \hat{j} (y) = \hat{j} - y \hat{j} = (1 - y) \hat{j} \] 3. For the third term \(\hat{k} \times (\vec{r} \times \hat{k})\): \[ \hat{k} \times (\vec{r} \times \hat{k}) = \hat{k} (\hat{k} \cdot \hat{k}) - \hat{k} (\vec{r} \cdot \hat{k}) = \hat{k} \cdot 1 - \hat{k} (z) = \hat{k} - z \hat{k} = (1 - z) \hat{k} \] ### Step 3: Combine All Terms Now, we can combine all the terms we calculated: \[ (1 - x) \hat{i} + (1 - y) \hat{j} + (1 - z) \hat{k} \] ### Step 4: Rewrite in Terms of \(\vec{r}\) Since \(\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}\), we can express the result as: \[ \vec{r} - (x \hat{i} + y \hat{j} + z \hat{k}) + \hat{i} + \hat{j} + \hat{k} = \hat{i} + \hat{j} + \hat{k} - \vec{r} \] ### Final Result Thus, the final result simplifies to: \[ 2\vec{r} \] ### Conclusion The value of the expression is: \[ 2\vec{r} \]

To solve the problem, we need to evaluate the expression: \[ \hat{i} \times (\vec{r} \times \hat{i}) + \hat{j} \times (\vec{r} \times \hat{j}) + \hat{k} \times (\vec{r} \times \hat{k}) \] where \(\vec{r}\) is any vector. ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

For any vector veca the value of (vecaxxhati)^2+(vecaxxhatj)^2+(vecaxxhatk)^2 is equal to

If veca is any vector and hati,hatj and hatk are unit vectors along the x,y and z directions then hatixx(vecaxxhati)+hatjxx(vecaxxhatj)+hatkxx(vecaxxveck)= (A) veca (B) -veca (C) 2veca (D) 0

If hata=hati+2hatj+3hatk, hatb=hatixx(vecaxxhati)+hatjxx(vecaxxhatj)+hatkxx(vecaxxhatk) then length of vecb is equal to (A) sqrt(12) (B) 2sqrt(12) (C) 2sqrt(14) (D) 3sqrt(12)

For any three vectors veca, vecb, vecc the value of vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb) , is

Statement 1: Let vecr be any vector in space. Then, vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk Statement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then vecr={([(vecr, vecb, vecc)])/([(veca, vecb, vecc)])}veca+{([(vecr, vecc, veca)])/([(veca, vecb, vecc)])}vecb+{([(vecr, veca, vecb)])/([(veca, vecb, vecc)])}vecc

Statement 1: If veca, vecb are non zero and non collinear vectors, then vecaxxvecb=[(veca, vecb, hati)]hati+[(veca, vecb, hatj)]hatj+[(veca, vecb, hatk)]hatk Statement 2: For any vector vecr vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk

For any vector vecr, (vecr.hati) ^(2) + (vecr.hatj)^(2) + ( vecr.hatk)^(2) is equal to

Given any vector, vecr,|vecr xx hati|^(2) + |vecr xx hatj|^(2) + |vecr xx hatk|^(2) equals to:

For any three vectors a,b\ a n d\ c write the value of vec axx( vec b+ vec c)+ vec bxx( vec c+ vec a)+ vec cxx( vec a+ vec b)dot

Writhe the value of ( vec adot hat i) hat i+( vec adot hat j) hat j+( vec adot hat k) hat k\ w h e r e\ vec a is any vector.

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  2. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  3. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  4. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  5. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  6. If vecA, vecB and vecC are three non - coplanar vectors, then (vecA.ve...

    Text Solution

    |

  7. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  8. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  9. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  10. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  11. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  12. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |

  13. If veca,vecb and vecc are non coplanar and unit vectors such that veca...

    Text Solution

    |

  14. Let a,b and c be distinct non-negative numbers. If the vectors ahati +...

    Text Solution

    |

  15. If vecaxxvecb=vecc and vecbxxvecc=veca, show that veca,vecb,vecc are o...

    Text Solution

    |

  16. Let veca , vecb and vecc be vectors forming right- hand triad . Let ve...

    Text Solution

    |

  17. vecrxxveca=vecbxxveca,vecrxxvecb=vecaxxvecb,vecanevec0,vecbnevec0,veca...

    Text Solution

    |

  18. The vector veca coplanar with the vectors hati and hatj perendicular t...

    Text Solution

    |

  19. If the vectors veca and vecb are mutually perpendicular, then veca xx ...

    Text Solution

    |

  20. If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxv...

    Text Solution

    |