Home
Class 12
MATHS
vecaxx(vecaxx(vecaxxvecb)) equals...

`vecaxx(vecaxx(vecaxxvecb))` equals

A

`(veca.vecb)(vecaxxvecb)`

B

`(veca.veca)(vecbxxveca)`

C

`(vecb.vecb)(vecaxxvecb)`

D

`(vecb.vecb)(vecbxxveca)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \vec{a} \times (\vec{a} \times (\vec{a} \times \vec{b})) \), we will use the vector triple product identity. The identity states that: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] ### Step 1: Apply the triple product identity Let \( \vec{y} = \vec{a} \) and \( \vec{z} = \vec{b} \). We first need to evaluate \( \vec{a} \times (\vec{a} \times \vec{b}) \). Using the identity: \[ \vec{a} \times (\vec{a} \times \vec{b}) = (\vec{a} \cdot \vec{b}) \vec{a} - (\vec{a} \cdot \vec{a}) \vec{b} \] ### Step 2: Substitute the result back into the original expression Now we substitute this result back into the original expression: \[ \vec{a} \times (\vec{a} \times (\vec{a} \times \vec{b})) = \vec{a} \times \left( (\vec{a} \cdot \vec{b}) \vec{a} - (\vec{a} \cdot \vec{a}) \vec{b} \right) \] ### Step 3: Distribute the cross product Using the distributive property of the cross product, we have: \[ \vec{a} \times \left( (\vec{a} \cdot \vec{b}) \vec{a} \right) - \vec{a} \times \left( (\vec{a} \cdot \vec{a}) \vec{b} \right) \] ### Step 4: Evaluate each term 1. The first term \( \vec{a} \times \left( (\vec{a} \cdot \vec{b}) \vec{a} \right) \) is zero because the cross product of any vector with itself is zero: \[ \vec{a} \times \vec{a} = 0 \] 2. The second term can be simplified as follows: \[ \vec{a} \times \left( (\vec{a} \cdot \vec{a}) \vec{b} \right) = (\vec{a} \cdot \vec{a}) (\vec{a} \times \vec{b}) \] ### Step 5: Combine the results Putting it all together, we find: \[ \vec{a} \times (\vec{a} \times (\vec{a} \times \vec{b})) = 0 - (\vec{a} \cdot \vec{a}) (\vec{a} \times \vec{b}) = - (\vec{a} \cdot \vec{a}) (\vec{a} \times \vec{b}) \] ### Final Result Thus, the final result is: \[ \vec{a} \times (\vec{a} \times (\vec{a} \times \vec{b})) = - (\vec{a} \cdot \vec{a}) (\vec{a} \times \vec{b}) \]

To solve the expression \( \vec{a} \times (\vec{a} \times (\vec{a} \times \vec{b})) \), we will use the vector triple product identity. The identity states that: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] ### Step 1: Apply the triple product identity ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If |veca|=2 and |vecb|=3 and veca.vecb=0, " then " (vecaxx(vecaxx(vecaxx(vecaxxvecb)))) is equal to the given diagonal is vecc = 4 hatk = 8hatk then , the volume of a parallelpiped is

If veca, vecb are non zero vectors, then ((vecaxxvecb)xxveca).((vecbxxveca)xxvecb) equals

If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxvecb)xx(vecaxxvecc)+(vecbxxvecc)xx(vecbxxveca)+(veccxxveca)xx(veccxxvecb) is equal to

If |veca|=2, |vecb|=5 and veca*vecb=0 , then veca xx (vecaxx(vecaxx(vecaxx(vecaxx(veca xx vecb))))) is equal to :

If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd) is equal to

If vecaxx[vecaxx{vecaxx(vecaxxvecb)}]=|veca|^4 vecb how are veca and vecb related? (A) veca and vecb are coplanar (B) veca and vecb are collinear (C) veca is perpendicular to vecb (D) veca is parallel to vecb but veca and vecb are non collinear

If vecb is a unit vector, then (veca. vecb)vecb+vecbxx(vecaxxvecb) is a equal to

If vecb and vecc are two non-collinear such that veca ||(vecbxxvecc) . Then prove that (vecaxxvecb).(vecaxxvecc) is equal to |veca|^(2)(vecb.vecc)

For any three vectors veca, vecb, vecc the value of vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb) , is

For vectors veca,vecb,vecc,vecd, vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc and (vecaxxvecb).(veccxxvecd)=(veca.vecc)(vecb.vecd)-(veca.vecd)(vecb.vecc) Now answer the following question: (vecaxxvecb).(veccxxvecd) is equal to (A) veca.(vecbxx(veccxxvecd)) (B) |veca|(vecb.(veccxxvecd)) (C) |vecaxxvecb|.|veccxxvecd| (D) none of these

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. show that (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) if and only if veca a...

    Text Solution

    |

  2. If veca,vecb, vecc and vecp,vecq,vecr are reciprocal system of vectors...

    Text Solution

    |

  3. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  4. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |

  5. If veca,vecb and vecc are non coplanar and unit vectors such that veca...

    Text Solution

    |

  6. Let a,b and c be distinct non-negative numbers. If the vectors ahati +...

    Text Solution

    |

  7. If vecaxxvecb=vecc and vecbxxvecc=veca, show that veca,vecb,vecc are o...

    Text Solution

    |

  8. Let veca , vecb and vecc be vectors forming right- hand triad . Let ve...

    Text Solution

    |

  9. vecrxxveca=vecbxxveca,vecrxxvecb=vecaxxvecb,vecanevec0,vecbnevec0,veca...

    Text Solution

    |

  10. The vector veca coplanar with the vectors hati and hatj perendicular t...

    Text Solution

    |

  11. If the vectors veca and vecb are mutually perpendicular, then veca xx ...

    Text Solution

    |

  12. If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxv...

    Text Solution

    |

  13. Let veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit ...

    Text Solution

    |

  14. If the vectors (sec^(2)A)hati+hatj+hatk, hati+(sec^(2)B)hatj+hatk,hati...

    Text Solution

    |

  15. x and y are two mutually perpendicular unit vector, if the vectors aha...

    Text Solution

    |

  16. The three concurrent edges of a parallelopiped represent the vectors ...

    Text Solution

    |

  17. If a=hati+hatj+hatk,b=hati+hatj,c=hati and (axxb)xxc=lamda a+mub, then...

    Text Solution

    |

  18. If veca=2hati-3hatj+5hatk , vecb=3hati-4hatj+5hatk and vecc=5hati-3hat...

    Text Solution

    |

  19. If veca,vecb,vecc are linearly independent vectors, then ((veca+2vecb)...

    Text Solution

    |

  20. If veca,vecb are non-collinear vectors, then [(veca,vecb,hati)]hati+[...

    Text Solution

    |