Home
Class 12
MATHS
If the vectors (sec^(2)A)hati+hatj+hatk,...

If the vectors `(sec^(2)A)hati+hatj+hatk, hati+(sec^(2)B)hatj+hatk,hati+hatj+(sec^(2) c)hatk` are coplanar, then the value of `cosec^(2)A+cosec^(2)B+cosec^(2)C`, is

A

1

B

2

C

3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the condition under which the three given vectors are coplanar. The vectors are: 1. \( \vec{A} = \sec^2 A \hat{i} + \hat{j} + \hat{k} \) 2. \( \vec{B} = \hat{i} + \sec^2 B \hat{j} + \hat{k} \) 3. \( \vec{C} = \hat{i} + \hat{j} + \sec^2 C \hat{k} \) The vectors are coplanar if the scalar triple product of the vectors is zero. This can be expressed using the determinant of a matrix formed by the coefficients of the vectors. ### Step 1: Set up the determinant The scalar triple product can be represented as: \[ \begin{vmatrix} \sec^2 A & 1 & 1 \\ 1 & \sec^2 B & 1 \\ 1 & 1 & \sec^2 C \end{vmatrix} = 0 \] ### Step 2: Calculate the determinant We will calculate the determinant using the formula for a 3x3 matrix: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our determinant, we have: \[ D = \sec^2 A \begin{vmatrix} \sec^2 B & 1 \\ 1 & \sec^2 C \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & \sec^2 C \end{vmatrix} + 1 \begin{vmatrix} 1 & \sec^2 B \\ 1 & 1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} \sec^2 B & 1 \\ 1 & \sec^2 C \end{vmatrix} = \sec^2 B \cdot \sec^2 C - 1 \) 2. \( \begin{vmatrix} 1 & 1 \\ 1 & \sec^2 C \end{vmatrix} = 1 \cdot \sec^2 C - 1 = \sec^2 C - 1 \) 3. \( \begin{vmatrix} 1 & \sec^2 B \\ 1 & 1 \end{vmatrix} = 1 \cdot 1 - 1 \cdot \sec^2 B = 1 - \sec^2 B \) Substituting these back into the determinant: \[ D = \sec^2 A (\sec^2 B \sec^2 C - 1) - (\sec^2 C - 1) + (1 - \sec^2 B) \] ### Step 3: Expand and simplify Expanding this gives: \[ D = \sec^2 A \sec^2 B \sec^2 C - \sec^2 A - \sec^2 C + 1 + 1 - \sec^2 B \] Combining like terms, we have: \[ D = \sec^2 A \sec^2 B \sec^2 C - \sec^2 A - \sec^2 B - \sec^2 C + 2 \] Setting \( D = 0 \) gives: \[ \sec^2 A \sec^2 B \sec^2 C - \sec^2 A - \sec^2 B - \sec^2 C + 2 = 0 \] ### Step 4: Rearranging the equation Rearranging the equation, we find: \[ \sec^2 A \sec^2 B \sec^2 C = \sec^2 A + \sec^2 B + \sec^2 C - 2 \] ### Step 5: Using the identity Using the identity \( \sec^2 \theta = 1 + \tan^2 \theta \): Let \( x = \tan^2 A \), \( y = \tan^2 B \), \( z = \tan^2 C \). Then: \[ \sec^2 A = 1 + x, \quad \sec^2 B = 1 + y, \quad \sec^2 C = 1 + z \] Substituting these into the equation gives: \[ (1 + x)(1 + y)(1 + z) = (1 + x) + (1 + y) + (1 + z) - 2 \] ### Step 6: Simplifying further Expanding the left side: \[ 1 + x + y + z + xy + xz + yz + xyz = x + y + z + 3 - 2 \] This simplifies to: \[ 1 + xy + xz + yz + xyz = 1 + x + y + z \] ### Step 7: Final conclusion This leads us to conclude that: \[ xy + xz + yz + xyz = x + y + z \] From this, we can derive that: \[ \csc^2 A + \csc^2 B + \csc^2 C = 2 \] Thus, the final answer is: \[ \csc^2 A + \csc^2 B + \csc^2 C = 2 \]

To solve the problem, we need to determine the condition under which the three given vectors are coplanar. The vectors are: 1. \( \vec{A} = \sec^2 A \hat{i} + \hat{j} + \hat{k} \) 2. \( \vec{B} = \hat{i} + \sec^2 B \hat{j} + \hat{k} \) 3. \( \vec{C} = \hat{i} + \hat{j} + \sec^2 C \hat{k} \) The vectors are coplanar if the scalar triple product of the vectors is zero. This can be expressed using the determinant of a matrix formed by the coefficients of the vectors. ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

IF (sec^2A)hati+hatj+hatk, hati+(sec^2 B)hatj+hatk and hati+hatj+(sec^2 C)hatk are coplanar then cot^2 A+cot^2B+cot^2C is

The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:

Vectors 2hati+2hatj-2hatk,5hati+yhatj+hatk and -hati+2hatj+2hatk are coplanar then find the value of y.

Vectors 5hati+yhatj+hatk,2hati+2hatj-2hatk and -hati+2hatj+2hatk are coplaner then find the value of y.

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of lamda .

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of (lamda -4) .

If the vectors 2hati-hatj+hatk,hati+2hatj-3hatk and 3hati+ahatj+5hatk are coplanar, the prove that a=-4.

The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=hati-3hatj+lambdahatk are coplanar if the value of lambda is

If the vectors 4hati+11hatj+mhatk,7hati+2hatj+6hatk and hati+5hatj+4hatk are coplanar, then m is equal to

If vec a =hati +3hatj , vecb = 2hati -hatj - hatk and vec c =mhati +7 hatj +3hatk are coplanar then find the value of m.

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxv...

    Text Solution

    |

  2. Let veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit ...

    Text Solution

    |

  3. If the vectors (sec^(2)A)hati+hatj+hatk, hati+(sec^(2)B)hatj+hatk,hati...

    Text Solution

    |

  4. x and y are two mutually perpendicular unit vector, if the vectors aha...

    Text Solution

    |

  5. The three concurrent edges of a parallelopiped represent the vectors ...

    Text Solution

    |

  6. If a=hati+hatj+hatk,b=hati+hatj,c=hati and (axxb)xxc=lamda a+mub, then...

    Text Solution

    |

  7. If veca=2hati-3hatj+5hatk , vecb=3hati-4hatj+5hatk and vecc=5hati-3hat...

    Text Solution

    |

  8. If veca,vecb,vecc are linearly independent vectors, then ((veca+2vecb)...

    Text Solution

    |

  9. If veca,vecb are non-collinear vectors, then [(veca,vecb,hati)]hati+[...

    Text Solution

    |

  10. If [(2veca+4vecb,vecc,vecd)]=lamda[(veca,vecc,vecd)]+mu[(vecb,vecc,vec...

    Text Solution

    |

  11. If the volume of the tetrahedron whose vertices are (1,-6,10),(-1,-3,7...

    Text Solution

    |

  12. (vecbxxvecc)xx(veccxxveca)=

    Text Solution

    |

  13. When a right handed rectangular Cartesian system OXYZ is rotated about...

    Text Solution

    |

  14. Prove that vectors vecu=(al+a(1)l(1))hati+(am+a(1)m(1))hatj + (an+a(...

    Text Solution

    |

  15. If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0, then [(veca...

    Text Solution

    |

  16. [(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

    Text Solution

    |

  17. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  18. If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,...

    Text Solution

    |

  19. If [(veca,vecb,vecc)]=3, then the volume (in cubic units) of the paral...

    Text Solution

    |

  20. If V is the volume of the parallelepiped having three coterminous edge...

    Text Solution

    |