Home
Class 12
MATHS
If veca,vecb,vecc are linearly independe...

If `veca,vecb,vecc` are linearly independent vectors, then `((veca+2vecb)xx(2vecb+vecc).(5vecc+veca))/(veca.(vecbxxvecc))` is equal to

A

10

B

14

C

18

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow a systematic approach to simplify the expression step by step. **Given Expression:** \[ \frac{(\vec{a} + 2\vec{b}) \times (2\vec{b} + \vec{c}) \cdot (5\vec{c} + \vec{a})}{\vec{a} \cdot (\vec{b} \times \vec{c})} \] ### Step 1: Expand the Cross Product We start by expanding the cross product in the numerator: \[ (\vec{a} + 2\vec{b}) \times (2\vec{b} + \vec{c}) = \vec{a} \times (2\vec{b} + \vec{c}) + 2\vec{b} \times (2\vec{b} + \vec{c}) \] ### Step 2: Simplify Each Term Now we simplify each term: 1. **First Term:** \[ \vec{a} \times (2\vec{b} + \vec{c}) = 2(\vec{a} \times \vec{b}) + \vec{a} \times \vec{c} \] 2. **Second Term:** \[ 2\vec{b} \times (2\vec{b} + \vec{c}) = 2\vec{b} \times 2\vec{b} + 2\vec{b} \times \vec{c} = 0 + 2(\vec{b} \times \vec{c}) = 2(\vec{b} \times \vec{c}) \] Combining these results, we have: \[ (\vec{a} + 2\vec{b}) \times (2\vec{b} + \vec{c}) = 2(\vec{a} \times \vec{b}) + \vec{a} \times \vec{c} + 2(\vec{b} \times \vec{c}) \] ### Step 3: Dot Product with \( (5\vec{c} + \vec{a}) \) Now we take the dot product of the result with \( (5\vec{c} + \vec{a}) \): \[ (2(\vec{a} \times \vec{b}) + \vec{a} \times \vec{c} + 2(\vec{b} \times \vec{c})) \cdot (5\vec{c} + \vec{a}) \] Distributing the dot product: 1. **First Term:** \[ 2(\vec{a} \times \vec{b}) \cdot 5\vec{c} + 2(\vec{a} \times \vec{b}) \cdot \vec{a} = 10(\vec{a} \times \vec{b}) \cdot \vec{c} + 0 = 10(\vec{a} \times \vec{b}) \cdot \vec{c} \] 2. **Second Term:** \[ (\vec{a} \times \vec{c}) \cdot 5\vec{c} + (\vec{a} \times \vec{c}) \cdot \vec{a} = 0 + 0 = 0 \] 3. **Third Term:** \[ 2(\vec{b} \times \vec{c}) \cdot 5\vec{c} + 2(\vec{b} \times \vec{c}) \cdot \vec{a} = 0 + 2(\vec{b} \times \vec{c}) \cdot \vec{a} = 2(\vec{b} \times \vec{c}) \cdot \vec{a} \] Combining these results gives: \[ 10(\vec{a} \times \vec{b}) \cdot \vec{c} + 2(\vec{b} \times \vec{c}) \cdot \vec{a} \] ### Step 4: Final Expression So, the numerator becomes: \[ 10(\vec{a} \times \vec{b}) \cdot \vec{c} + 2(\vec{b} \times \vec{c}) \cdot \vec{a} \] ### Step 5: Divide by the Denominator Now we divide by the denominator: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b} \times \vec{c}) \] ### Step 6: Simplifying the Expression Using the scalar triple product properties, we can simplify: \[ \frac{10(\vec{a} \times \vec{b}) \cdot \vec{c} + 2(\vec{b} \times \vec{c}) \cdot \vec{a}}{\vec{a} \cdot (\vec{b} \times \vec{c})} \] Using the identity of scalar triple products, we find: \[ = 10 + 2 = 12 \] ### Final Answer Thus, the value of the given expression is: \[ \boxed{12} \]

To solve the given problem, we will follow a systematic approach to simplify the expression step by step. **Given Expression:** \[ \frac{(\vec{a} + 2\vec{b}) \times (2\vec{b} + \vec{c}) \cdot (5\vec{c} + \vec{a})}{\vec{a} \cdot (\vec{b} \times \vec{c})} \] ### Step 1: Expand the Cross Product ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

Let veca,vecb,vecc be three linearly independent vectors, then ([veca+2vecb-vecc 2veca+vecb+vecc4veca-vecb+5vecc])/([vecavecbvecc])

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

Show that: (veca+vecb).{(vecb+vecc)xx(vecc+veca)|=2{veca.(vecbxxvecc)}

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

If vecA, vecB, vecC are non-coplanar vectors then (vecA.vecBxxvecC)/(vecCxxvecA.vecB)+(vecB.vecAxxvecC)/(vecC.vecAxxvecB)=

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If a=hati+hatj+hatk,b=hati+hatj,c=hati and (axxb)xxc=lamda a+mub, then...

    Text Solution

    |

  2. If veca=2hati-3hatj+5hatk , vecb=3hati-4hatj+5hatk and vecc=5hati-3hat...

    Text Solution

    |

  3. If veca,vecb,vecc are linearly independent vectors, then ((veca+2vecb)...

    Text Solution

    |

  4. If veca,vecb are non-collinear vectors, then [(veca,vecb,hati)]hati+[...

    Text Solution

    |

  5. If [(2veca+4vecb,vecc,vecd)]=lamda[(veca,vecc,vecd)]+mu[(vecb,vecc,vec...

    Text Solution

    |

  6. If the volume of the tetrahedron whose vertices are (1,-6,10),(-1,-3,7...

    Text Solution

    |

  7. (vecbxxvecc)xx(veccxxveca)=

    Text Solution

    |

  8. When a right handed rectangular Cartesian system OXYZ is rotated about...

    Text Solution

    |

  9. Prove that vectors vecu=(al+a(1)l(1))hati+(am+a(1)m(1))hatj + (an+a(...

    Text Solution

    |

  10. If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0, then [(veca...

    Text Solution

    |

  11. [(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

    Text Solution

    |

  12. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  13. If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,...

    Text Solution

    |

  14. If [(veca,vecb,vecc)]=3, then the volume (in cubic units) of the paral...

    Text Solution

    |

  15. If V is the volume of the parallelepiped having three coterminous edge...

    Text Solution

    |

  16. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  17. If vectors vec A B=-3 hat i+4 hat ka n d vec A C=5 hat i-2 hat j+4 ha...

    Text Solution

    |

  18. Let the position vectors of vertices A,B,C of DeltaABC be respectively...

    Text Solution

    |

  19. The position vector of a point P is vecr=xhati+yhatj+zhatk where x,y,z...

    Text Solution

    |

  20. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |