Home
Class 12
MATHS
If [(2veca+4vecb,vecc,vecd)]=lamda[(veca...

If `[(2veca+4vecb,vecc,vecd)]=lamda[(veca,vecc,vecd)]+mu[(vecb,vecc,vecd)]`, then `lamda+mu=`

A

6

B

-6

C

10

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation involving scalar triple products. The equation is: \[ [(2\vec{a} + 4\vec{b}, \vec{c}, \vec{d)] = \lambda [(\vec{a}, \vec{c}, \vec{d})] + \mu [(\vec{b}, \vec{c}, \vec{d})] \] ### Step-by-Step Solution: 1. **Understanding the Left-Hand Side (LHS)**: The left-hand side can be expressed using the properties of the scalar triple product. We can rewrite it as: \[ [(2\vec{a} + 4\vec{b}, \vec{c}, \vec{d})] = (2\vec{a} + 4\vec{b}) \cdot (\vec{c} \times \vec{d}) \] 2. **Distributing the Dot Product**: We can distribute the dot product over the sum: \[ = 2\vec{a} \cdot (\vec{c} \times \vec{d}) + 4\vec{b} \cdot (\vec{c} \times \vec{d}) \] 3. **Using the Definition of Scalar Triple Product**: The terms \( \vec{a} \cdot (\vec{c} \times \vec{d}) \) and \( \vec{b} \cdot (\vec{c} \times \vec{d}) \) can be expressed as scalar triple products: \[ = 2[(\vec{a}, \vec{c}, \vec{d})] + 4[(\vec{b}, \vec{c}, \vec{d})] \] 4. **Setting the LHS Equal to the RHS**: Now, we equate this to the right-hand side of the original equation: \[ 2[(\vec{a}, \vec{c}, \vec{d})] + 4[(\vec{b}, \vec{c}, \vec{d})] = \lambda[(\vec{a}, \vec{c}, \vec{d})] + \mu[(\vec{b}, \vec{c}, \vec{d})] \] 5. **Comparing Coefficients**: By comparing coefficients from both sides, we find: - From \( \lambda[(\vec{a}, \vec{c}, \vec{d})] \): \(\lambda = 2\) - From \( \mu[(\vec{b}, \vec{c}, \vec{d})] \): \(\mu = 4\) 6. **Calculating \(\lambda + \mu\)**: Finally, we calculate: \[ \lambda + \mu = 2 + 4 = 6 \] ### Final Answer: Thus, the value of \( \lambda + \mu \) is \( 6 \). ---

To solve the problem, we need to analyze the given equation involving scalar triple products. The equation is: \[ [(2\vec{a} + 4\vec{b}, \vec{c}, \vec{d)] = \lambda [(\vec{a}, \vec{c}, \vec{d})] + \mu [(\vec{b}, \vec{c}, \vec{d})] \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

Prove that [lambda veca +mu vecb" "vecc" "vecd]=lambda [veca" "vecc" "vecd]+mu[vecb" "vecc" "vecd] .

For any four vectors, prove that ( veca × vecb )×( vecc × vecd )=[ veca vecc vecd ] vecb −[ vecb vecc vecd ] veca

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

If veca, vecb, vecc are three given non-coplanar vectors and any arbitrary vector vecr in space, where Delta_(1)=|{:(vecr.veca,vecb.veca,vecc.veca),(vecr.vecb,vecb.vecb,vecc.vecb),(vecr.vecc,vecb.vecc,vecc.vecc):}|,Delta_(2)=|{:(veca.veca,vecr.veca,vecc.veca),(veca.vecb,vecr.vecb,vecc.vecb),(veca.vecc,vecr.vecc ,vecc.vecc):}| Delta_(3)=|{:(veca.veca,vecb.veca,vecr.veca),(veca.vecb,vecb.vecb,vecr.vecb),(veca.vecc,vecb.vecc,vecr.vecc):}|, Delta=|{:(veca.veca,vecb.veca,vecc.veca),(veca.vecb,vecb.vecb,vecc.vecb),(veca.vecc,vecb.vecc,vecc.vecc):}|, "then prove that " vecr=(Delta_(1))/Deltaveca+(Delta_(2))/Deltavecb+(Delta_(3))/Deltavecc

If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vecc).(vecb+vecc)=0 and vecc=lambdaveca+muvecb+omega(veca xx vecb) , where lambda, mu, omega are scalars, then

If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vecc).(vecb+vecc)=0 and vecc=lambdaveca+muvecb+omega(veca xx vecb) , where lambda, mu, omega are scalars, then

Let veca,vecb, vecc be any three vectors, Statement 1: [(veca+vecb, vecb+vecc,vecc+veca)]=2[(veca, vecb, vecc)] Statement 2: [(vecaxxvecb, vecbxxvecc, veccxxveca)]=[(veca, vecb, vecc)]^(2)

If veca,vecb,vecc are unity vectors such that vecd=lamdaveca+muvecb+gammavecc then lambda is equal to (A) ([veca vecb vecc])/([vecb veca vecc]) (B) ([vecb vecc vecd])/([vecb vecc veca]) (C) ([vecb vecd vecc])/([veca vecb vecc]) (D) ([vecc vecb vecd])/([veca vecb vecc])

If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(veccxxvecd)=1 and veca.vecc=1/2 then (A) veca,vecb,vecc are non coplanar (B) vecb,vecc, vecd are non coplanar (C) vecb, vecd are non paralel (D) veca, vecd are paralel and vecb, vecc are parallel

If vecd=lambda(vecaxxvecb)+mu(vecbxxvecc)+t(veccxxveca).[veca,vecbvecc]=(1)/(8) and vecd.(veca+vecb+vecc)=8 then lambda+mu+t equals …………

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If veca,vecb,vecc are linearly independent vectors, then ((veca+2vecb)...

    Text Solution

    |

  2. If veca,vecb are non-collinear vectors, then [(veca,vecb,hati)]hati+[...

    Text Solution

    |

  3. If [(2veca+4vecb,vecc,vecd)]=lamda[(veca,vecc,vecd)]+mu[(vecb,vecc,vec...

    Text Solution

    |

  4. If the volume of the tetrahedron whose vertices are (1,-6,10),(-1,-3,7...

    Text Solution

    |

  5. (vecbxxvecc)xx(veccxxveca)=

    Text Solution

    |

  6. When a right handed rectangular Cartesian system OXYZ is rotated about...

    Text Solution

    |

  7. Prove that vectors vecu=(al+a(1)l(1))hati+(am+a(1)m(1))hatj + (an+a(...

    Text Solution

    |

  8. If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0, then [(veca...

    Text Solution

    |

  9. [(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

    Text Solution

    |

  10. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  11. If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,...

    Text Solution

    |

  12. If [(veca,vecb,vecc)]=3, then the volume (in cubic units) of the paral...

    Text Solution

    |

  13. If V is the volume of the parallelepiped having three coterminous edge...

    Text Solution

    |

  14. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  15. If vectors vec A B=-3 hat i+4 hat ka n d vec A C=5 hat i-2 hat j+4 ha...

    Text Solution

    |

  16. Let the position vectors of vertices A,B,C of DeltaABC be respectively...

    Text Solution

    |

  17. The position vector of a point P is vecr=xhati+yhatj+zhatk where x,y,z...

    Text Solution

    |

  18. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  19. If the vectors 2ahati+bhatj+chatk, bhati+chatj+2ahatk and chati+2ahatj...

    Text Solution

    |

  20. Let alpha = a hati + b hatj + chatk , vecbeta = bhati + chatj + ahatk ...

    Text Solution

    |