Home
Class 12
MATHS
If the volume of the tetrahedron whose v...

If the volume of the tetrahedron whose vertices are `(1,-6,10),(-1,-3,7),(5,-1,lamda)` and `(7,-4,7)` is 11 cubit units then `lamda=`

A

2,6

B

3,4

C

1,7

D

5,6

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) for the tetrahedron with vertices \( A(1, -6, 10) \), \( B(-1, -3, 7) \), \( C(5, -1, \lambda) \), and \( D(7, -4, 7) \) such that the volume is 11 cubic units, we can follow these steps: ### Step 1: Determine the vectors First, we need to find the vectors corresponding to the edges of the tetrahedron that share a common vertex. We can choose vertex \( A \) as the common vertex. - Vector \( \vec{AB} = B - A = (-1 - 1, -3 + 6, 7 - 10) = (-2, 3, -3) \) - Vector \( \vec{AC} = C - A = (5 - 1, -1 + 6, \lambda - 10) = (4, 5, \lambda - 10) \) - Vector \( \vec{AD} = D - A = (7 - 1, -4 + 6, 7 - 10) = (6, 2, -3) \) ### Step 2: Set up the volume formula The volume \( V \) of a tetrahedron formed by vectors \( \vec{AB} \), \( \vec{AC} \), and \( \vec{AD} \) is given by: \[ V = \frac{1}{6} | \vec{AB} \cdot (\vec{AC} \times \vec{AD}) | \] ### Step 3: Calculate the cross product \( \vec{AC} \times \vec{AD} \) To find the cross product \( \vec{AC} \times \vec{AD} \): \[ \vec{AC} = (4, 5, \lambda - 10), \quad \vec{AD} = (6, 2, -3) \] Using the determinant formula for the cross product: \[ \vec{AC} \times \vec{AD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 5 & \lambda - 10 \\ 6 & 2 & -3 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 5 & \lambda - 10 \\ 2 & -3 \end{vmatrix} - \hat{j} \begin{vmatrix} 4 & \lambda - 10 \\ 6 & -3 \end{vmatrix} + \hat{k} \begin{vmatrix} 4 & 5 \\ 6 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 5 & \lambda - 10 \\ 2 & -3 \end{vmatrix} = 5(-3) - 2(\lambda - 10) = -15 - 2\lambda + 20 = 5 - 2\lambda \) 2. \( \begin{vmatrix} 4 & \lambda - 10 \\ 6 & -3 \end{vmatrix} = 4(-3) - 6(\lambda - 10) = -12 - 6\lambda + 60 = 48 - 6\lambda \) 3. \( \begin{vmatrix} 4 & 5 \\ 6 & 2 \end{vmatrix} = 4(2) - 5(6) = 8 - 30 = -22 \) Putting it all together: \[ \vec{AC} \times \vec{AD} = \hat{i}(5 - 2\lambda) - \hat{j}(48 - 6\lambda) - 22\hat{k} \] \[ = (5 - 2\lambda, -(48 - 6\lambda), -22) \] ### Step 4: Calculate the dot product \( \vec{AB} \cdot (\vec{AC} \times \vec{AD}) \) Now, we compute: \[ \vec{AB} \cdot (\vec{AC} \times \vec{AD}) = (-2, 3, -3) \cdot (5 - 2\lambda, -(48 - 6\lambda), -22) \] Calculating the dot product: \[ = -2(5 - 2\lambda) + 3(-(48 - 6\lambda)) - 3(-22) \] \[ = -10 + 4\lambda - 144 + 18\lambda + 66 \] \[ = 22\lambda - 88 \] ### Step 5: Set up the volume equation The volume is given as 11 cubic units: \[ \frac{1}{6} |22\lambda - 88| = 11 \] Multiplying both sides by 6: \[ |22\lambda - 88| = 66 \] ### Step 6: Solve the absolute value equation This gives us two cases to solve: 1. \( 22\lambda - 88 = 66 \) 2. \( 22\lambda - 88 = -66 \) **For the first case:** \[ 22\lambda = 154 \implies \lambda = \frac{154}{22} = 7 \] **For the second case:** \[ 22\lambda = 22 \implies \lambda = 1 \] ### Final Answer Thus, the values of \( \lambda \) are \( \lambda = 1 \) and \( \lambda = 7 \).

To find the value of \( \lambda \) for the tetrahedron with vertices \( A(1, -6, 10) \), \( B(-1, -3, 7) \), \( C(5, -1, \lambda) \), and \( D(7, -4, 7) \) such that the volume is 11 cubic units, we can follow these steps: ### Step 1: Determine the vectors First, we need to find the vectors corresponding to the edges of the tetrahedron that share a common vertex. We can choose vertex \( A \) as the common vertex. - Vector \( \vec{AB} = B - A = (-1 - 1, -3 + 6, 7 - 10) = (-2, 3, -3) \) - Vector \( \vec{AC} = C - A = (5 - 1, -1 + 6, \lambda - 10) = (4, 5, \lambda - 10) \) - Vector \( \vec{AD} = D - A = (7 - 1, -4 + 6, 7 - 10) = (6, 2, -3) \) ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

Find the area of the triangle whose vertices are: (2,7),(1,1),(10,8)

Find the area of the pentagon whose vertices are A(1,1),B(7,21),C(7,-3),D(12 ,2), and E(0,-3)

Find the area of the pentagon whose vertices are A(1,1),B(7,21),C(7,-3),D(12 ,2), and E(0,-3)

Find the area of the quadrilateral whose vertices are : (1, 1), (7, -3), (12, 2) and (7, 21)

Find the area of the triangle whose vertices are : (3,-4), (7, 5), (-1, 10)

Find the area of the pentagon whose vertices are (4, 3), (-5, 6), (0, -7), (3, -6), (-7, -2)

Find the area of the triangle whose vertices are : a) (2,6) (7,8) and (1,1)

Find the angles of a triangle whose vertices are A(0,-1,-2),B(3,1,4) and C (5,7,1).

Find the area of triangle whose vertices are (2,7), (1,1) and (10,8).

Find the lengths of the medians of the triangle whose vertices are A (2,-3, 1), B (-6,5,3), C(8,7,- 7).

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If veca,vecb are non-collinear vectors, then [(veca,vecb,hati)]hati+[...

    Text Solution

    |

  2. If [(2veca+4vecb,vecc,vecd)]=lamda[(veca,vecc,vecd)]+mu[(vecb,vecc,vec...

    Text Solution

    |

  3. If the volume of the tetrahedron whose vertices are (1,-6,10),(-1,-3,7...

    Text Solution

    |

  4. (vecbxxvecc)xx(veccxxveca)=

    Text Solution

    |

  5. When a right handed rectangular Cartesian system OXYZ is rotated about...

    Text Solution

    |

  6. Prove that vectors vecu=(al+a(1)l(1))hati+(am+a(1)m(1))hatj + (an+a(...

    Text Solution

    |

  7. If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0, then [(veca...

    Text Solution

    |

  8. [(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

    Text Solution

    |

  9. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  10. If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,...

    Text Solution

    |

  11. If [(veca,vecb,vecc)]=3, then the volume (in cubic units) of the paral...

    Text Solution

    |

  12. If V is the volume of the parallelepiped having three coterminous edge...

    Text Solution

    |

  13. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  14. If vectors vec A B=-3 hat i+4 hat ka n d vec A C=5 hat i-2 hat j+4 ha...

    Text Solution

    |

  15. Let the position vectors of vertices A,B,C of DeltaABC be respectively...

    Text Solution

    |

  16. The position vector of a point P is vecr=xhati+yhatj+zhatk where x,y,z...

    Text Solution

    |

  17. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  18. If the vectors 2ahati+bhatj+chatk, bhati+chatj+2ahatk and chati+2ahatj...

    Text Solution

    |

  19. Let alpha = a hati + b hatj + chatk , vecbeta = bhati + chatj + ahatk ...

    Text Solution

    |

  20. Let veca,vecb,vecc be three mutually perpendicular vectors having same...

    Text Solution

    |