Home
Class 12
MATHS
(vecbxxvecc)xx(veccxxveca)=...

`(vecbxxvecc)xx(veccxxveca)=`

A

`[(veca,vecb,vecc)]vecc`

B

`[(veca,vecb,vecc)]vecb`

C

`[(veca,vecb,vecc)]veca`

D

`axx(vecbxxvecc)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a})\), we will use the vector triple product identity. The vector triple product identity states that for any vectors \(\mathbf{x}\), \(\mathbf{y}\), and \(\mathbf{z}\): \[ \mathbf{x} \times (\mathbf{y} \times \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z}) \mathbf{y} - (\mathbf{x} \cdot \mathbf{y}) \mathbf{z} \] ### Step 1: Identify the vectors Let: - \(\mathbf{x} = \mathbf{b}\) - \(\mathbf{y} = \mathbf{c}\) - \(\mathbf{z} = \mathbf{a}\) ### Step 2: Apply the vector triple product identity Using the identity, we can rewrite the expression: \[ (\mathbf{b} \times (\mathbf{c} \times \mathbf{a})) = (\mathbf{b} \cdot \mathbf{a}) \mathbf{c} - (\mathbf{b} \cdot \mathbf{c}) \mathbf{a} \] ### Step 3: Substitute back into the expression Now, we need to find \((\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a})\): Using the identity again, we can rewrite \((\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a})\): \[ (\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a}) = (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a} \mathbf{c} - (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{c} \mathbf{a} \] ### Step 4: Evaluate the dot products 1. The term \((\mathbf{b} \times \mathbf{c}) \cdot \mathbf{c}\) is zero because \(\mathbf{b} \times \mathbf{c}\) is perpendicular to \(\mathbf{c}\). 2. Therefore, we are left with: \[ (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a} \mathbf{c} \] ### Step 5: Write the final expression The final expression can be simplified to: \[ (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a} \mathbf{c} = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \mathbf{c} \] ### Conclusion Thus, the value of \((\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a})\) is: \[ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \mathbf{c} \]

To solve the expression \((\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a})\), we will use the vector triple product identity. The vector triple product identity states that for any vectors \(\mathbf{x}\), \(\mathbf{y}\), and \(\mathbf{z}\): \[ \mathbf{x} \times (\mathbf{y} \times \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z}) \mathbf{y} - (\mathbf{x} \cdot \mathbf{y}) \mathbf{z} \] ### Step 1: Identify the vectors Let: ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

Let veca=alphahati+2hatj- 3hatk, vecb=hati+ 2alphahatj - 2hatk and vecc = 2hati - alphahatj + hatk . Find the value of 6 alpha . Such that {(vecaxxvecb)xx(vecbxx vecc)}xx(veccxxveca)=0

Let veca=alphahati+2hatj- 3hatk, vecb=hati+ 2alphahatj - 2hatk and vecc = 2hati - alphahatj + hatk . Find the value of 6 alpha . Such that {(vecaxxvecb)xx(vecbxx vecc)}xx(veccxxveca)=0

For three vectors veca+vecb+vecc=0 , check if (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

If vecr is a unit vector such that vecr=x(vecbxxvecc)+y(veccxxveca)+z(vecaxxvecb) , then |(vecr.veca)(vecbxxvecc)+(vecr.vecb)(veccxxveca)+(vecr.vecc)(veccxxvecb)| is equal to

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=(1)/(3) , then x+y+z is equal to

If vec(alpha)=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=1/8 , then x+y+z=

Prove that the points A,B,C wth positon vectros veca,vecb,vecc are collinear if and only if (vecbxxvecc)+(veccxxveca)+(vecaxxvecb)=vec0

If vecd=lambda(vecaxxvecb)+mu(vecbxxvecc)+t(veccxxveca).[veca,vecbvecc]=(1)/(8) and vecd.(veca+vecb+vecc)=8 then lambda+mu+t equals …………

Let veca, vecb, vecc be three vectors such that [(veca, vecb, vecc)]=2 . If vecr=l(vecbxxvecc)+m(veccxxveca)+n(vecaxxvecb) be perpendicular to veca+vecb+vecc , then the value of l+m+n is

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) Such that x+y+z!=0 and vecr.(veca+vecb+vecc)=x+y+z , then [veca vecb vecc]=

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If [(2veca+4vecb,vecc,vecd)]=lamda[(veca,vecc,vecd)]+mu[(vecb,vecc,vec...

    Text Solution

    |

  2. If the volume of the tetrahedron whose vertices are (1,-6,10),(-1,-3,7...

    Text Solution

    |

  3. (vecbxxvecc)xx(veccxxveca)=

    Text Solution

    |

  4. When a right handed rectangular Cartesian system OXYZ is rotated about...

    Text Solution

    |

  5. Prove that vectors vecu=(al+a(1)l(1))hati+(am+a(1)m(1))hatj + (an+a(...

    Text Solution

    |

  6. If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0, then [(veca...

    Text Solution

    |

  7. [(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

    Text Solution

    |

  8. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  9. If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,...

    Text Solution

    |

  10. If [(veca,vecb,vecc)]=3, then the volume (in cubic units) of the paral...

    Text Solution

    |

  11. If V is the volume of the parallelepiped having three coterminous edge...

    Text Solution

    |

  12. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  13. If vectors vec A B=-3 hat i+4 hat ka n d vec A C=5 hat i-2 hat j+4 ha...

    Text Solution

    |

  14. Let the position vectors of vertices A,B,C of DeltaABC be respectively...

    Text Solution

    |

  15. The position vector of a point P is vecr=xhati+yhatj+zhatk where x,y,z...

    Text Solution

    |

  16. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  17. If the vectors 2ahati+bhatj+chatk, bhati+chatj+2ahatk and chati+2ahatj...

    Text Solution

    |

  18. Let alpha = a hati + b hatj + chatk , vecbeta = bhati + chatj + ahatk ...

    Text Solution

    |

  19. Let veca,vecb,vecc be three mutually perpendicular vectors having same...

    Text Solution

    |

  20. Let veca,vecb and vecc be the three non-coplanar vectors and vecd be a...

    Text Solution

    |