Home
Class 12
MATHS
[(veca,vecb,axxvecb)]+(veca.vecb)^(2)=...

`[(veca,vecb,axxvecb)]+(veca.vecb)^(2)=`

A

`|veca|^(2)|vecb|^(2)`

B

`|veca+vecb|^(2)`

C

`|veca|^(2)+|vecb|^(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \([( \vec{a}, \vec{b}, \vec{a} \times \vec{b})] + (\vec{a} \cdot \vec{b})^2\). ### Step 1: Understand the scalar triple product The scalar triple product \(( \vec{a}, \vec{b}, \vec{c})\) is defined as \(\vec{a} \cdot (\vec{b} \times \vec{c})\). In our case, we need to calculate \(( \vec{a}, \vec{b}, \vec{a} \times \vec{b})\). ### Step 2: Apply the scalar triple product formula Using the definition, we have: \[ ( \vec{a}, \vec{b}, \vec{a} \times \vec{b}) = \vec{a} \cdot (\vec{b} \times (\vec{a} \times \vec{b})) \] ### Step 3: Use the vector triple product identity We can simplify \(\vec{b} \times (\vec{a} \times \vec{b})\) using the vector triple product identity: \[ \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w} \] Applying this identity, we get: \[ \vec{b} \times (\vec{a} \times \vec{b}) = (\vec{b} \cdot \vec{b}) \vec{a} - (\vec{b} \cdot \vec{a}) \vec{b} \] ### Step 4: Substitute back into the scalar triple product Now substituting back into our expression: \[ ( \vec{a}, \vec{b}, \vec{a} \times \vec{b}) = \vec{a} \cdot \left( (\vec{b} \cdot \vec{b}) \vec{a} - (\vec{b} \cdot \vec{a}) \vec{b} \right) \] This expands to: \[ = (\vec{b} \cdot \vec{b}) (\vec{a} \cdot \vec{a}) - (\vec{b} \cdot \vec{a}) (\vec{a} \cdot \vec{b}) \] ### Step 5: Simplify the expression Notice that \(\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}\), so we can rewrite: \[ = |\vec{b}|^2 |\vec{a}|^2 - (\vec{a} \cdot \vec{b})^2 \] ### Step 6: Combine with the second part of the expression Now we need to add \((\vec{a} \cdot \vec{b})^2\) to our result: \[ |\vec{b}|^2 |\vec{a}|^2 - (\vec{a} \cdot \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 \] The \((\vec{a} \cdot \vec{b})^2\) terms cancel out: \[ = |\vec{b}|^2 |\vec{a}|^2 \] ### Final Result Thus, the final value of the expression is: \[ |\vec{a}|^2 |\vec{b}|^2 \]

To solve the problem, we need to evaluate the expression \([( \vec{a}, \vec{b}, \vec{a} \times \vec{b})] + (\vec{a} \cdot \vec{b})^2\). ### Step 1: Understand the scalar triple product The scalar triple product \(( \vec{a}, \vec{b}, \vec{c})\) is defined as \(\vec{a} \cdot (\vec{b} \times \vec{c})\). In our case, we need to calculate \(( \vec{a}, \vec{b}, \vec{a} \times \vec{b})\). ### Step 2: Apply the scalar triple product formula Using the definition, we have: \[ ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are any two vectors , then prove that |vecaxxvecb|^(2)=|veca|^(2)|vecb|^(2)-(veca.vecb)^(2)=|{:(veca.veca,veca.vecb),(veca.vecb,vecb.vecb):}| or |vecaxxvecb|^(2)+(veca.vecb)^(2)=|veca|^(2)|vecb|^(2) (This is also known as Lagrange identily)

If |vecaxxvecb|^(2)+(veca.vecb)^(2)=144and|veca|=4,"then "|vecb| is equal to ……..

If vecr.veca=0, vecr.vecb=1and [vecr vecavecb]=1,veca.vecbne0,(veca.vecb)^(2)-|veca|^(2)|vecb|^(2)=1, then find vecr in terms of veca and vecb .

If [ veca vecbvecc]=2 , then find the value of [(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]

Prove that (veca+3vecb)xx(veca+vecb)+(3veca-5vecb)xx(veca-vecb)=0

vectors veca and vecb are inclined at an angle theta = 60^(@). " If " |veca|=1, |vecb| =2 , " then " [ (veca + 3vecb) xx ( 3 veca -vecb)] ^(2) is equal to

Let veca,vecb, vecc be any three vectors, Statement 1: [(veca+vecb, vecb+vecc,vecc+veca)]=2[(veca, vecb, vecc)] Statement 2: [(vecaxxvecb, vecbxxvecc, veccxxveca)]=[(veca, vecb, vecc)]^(2)

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

If veca and vecb be two non collinear vectors such that veca=vecc+vecd , where vecc is parallel to vecb and vecd is perpendicular to vecb obtain expression for vecc and vecd in terms of veca and vecb as: vecd= veca- ((veca.vecb)vecb)/b^2,vecc= ((veca.vecb)vecb)/b^2

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. Prove that vectors vecu=(al+a(1)l(1))hati+(am+a(1)m(1))hatj + (an+a(...

    Text Solution

    |

  2. If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0, then [(veca...

    Text Solution

    |

  3. [(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

    Text Solution

    |

  4. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  5. If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,...

    Text Solution

    |

  6. If [(veca,vecb,vecc)]=3, then the volume (in cubic units) of the paral...

    Text Solution

    |

  7. If V is the volume of the parallelepiped having three coterminous edge...

    Text Solution

    |

  8. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  9. If vectors vec A B=-3 hat i+4 hat ka n d vec A C=5 hat i-2 hat j+4 ha...

    Text Solution

    |

  10. Let the position vectors of vertices A,B,C of DeltaABC be respectively...

    Text Solution

    |

  11. The position vector of a point P is vecr=xhati+yhatj+zhatk where x,y,z...

    Text Solution

    |

  12. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  13. If the vectors 2ahati+bhatj+chatk, bhati+chatj+2ahatk and chati+2ahatj...

    Text Solution

    |

  14. Let alpha = a hati + b hatj + chatk , vecbeta = bhati + chatj + ahatk ...

    Text Solution

    |

  15. Let veca,vecb,vecc be three mutually perpendicular vectors having same...

    Text Solution

    |

  16. Let veca,vecb and vecc be the three non-coplanar vectors and vecd be a...

    Text Solution

    |

  17. Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |v...

    Text Solution

    |

  18. Let veca and vecc be unit vectors such that |vecb|=4 and vecaxxvecb=2(...

    Text Solution

    |

  19. If veca+2vecb+3vecc=0, then vecaxxvecb+vecbxxvecc+veccxxveca=

    Text Solution

    |

  20. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |