Home
Class 12
MATHS
If [(veca,vecb,vecc)]=3, then the volume...

If `[(veca,vecb,vecc)]=3`, then the volume (in cubic units) of the parallelopiped with `2veca+vecb,2vecb+vecc` and `2vecc+veca` as coterminous edges is

A

15

B

22

C

25

D

27

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the parallelepiped formed by the vectors \(2\vec{a} + \vec{b}\), \(2\vec{b} + \vec{c}\), and \(2\vec{c} + \vec{a}\), we can use the scalar triple product. The volume \(V\) of a parallelepiped defined by vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\) is given by: \[ V = |\vec{u} \cdot (\vec{v} \times \vec{w})| \] ### Step-by-Step Solution: 1. **Define the vectors**: Let: \[ \vec{u} = 2\vec{a} + \vec{b} \] \[ \vec{v} = 2\vec{b} + \vec{c} \] \[ \vec{w} = 2\vec{c} + \vec{a} \] 2. **Compute the cross product**: We need to find \(\vec{v} \times \vec{w}\): \[ \vec{v} \times \vec{w} = (2\vec{b} + \vec{c}) \times (2\vec{c} + \vec{a}) \] Using the distributive property of the cross product: \[ \vec{v} \times \vec{w} = 2\vec{b} \times 2\vec{c} + 2\vec{b} \times \vec{a} + \vec{c} \times 2\vec{c} + \vec{c} \times \vec{a} \] Since \(\vec{c} \times \vec{c} = \vec{0}\): \[ \vec{v} \times \vec{w} = 4(\vec{b} \times \vec{c}) + 2(\vec{b} \times \vec{a}) + (\vec{c} \times \vec{a}) \] 3. **Compute the dot product**: Now, we compute \(\vec{u} \cdot (\vec{v} \times \vec{w})\): \[ \vec{u} \cdot (\vec{v} \times \vec{w}) = (2\vec{a} + \vec{b}) \cdot \left(4(\vec{b} \times \vec{c}) + 2(\vec{b} \times \vec{a}) + (\vec{c} \times \vec{a})\right) \] Expanding this: \[ = 2\vec{a} \cdot (4(\vec{b} \times \vec{c})) + 2\vec{a} \cdot (2(\vec{b} \times \vec{a})) + 2\vec{a} \cdot (\vec{c} \times \vec{a}) + \vec{b} \cdot (4(\vec{b} \times \vec{c})) + \vec{b} \cdot (2(\vec{b} \times \vec{a})) + \vec{b} \cdot (\vec{c} \times \vec{a}) \] Noting that \(\vec{a} \cdot (\vec{b} \times \vec{a}) = 0\) and \(\vec{b} \cdot (\vec{b} \times \vec{c}) = 0\): \[ = 8(\vec{a} \cdot (\vec{b} \times \vec{c})) + 0 + 0 + 0 + 0 + \vec{b} \cdot (\vec{c} \times \vec{a}) \] \[ = 8(\vec{a} \cdot (\vec{b} \times \vec{c})) + \vec{b} \cdot (\vec{c} \times \vec{a}) \] The term \(\vec{b} \cdot (\vec{c} \times \vec{a})\) is also equal to \(\vec{a} \cdot (\vec{b} \times \vec{c})\) due to the properties of the scalar triple product. Thus: \[ \vec{u} \cdot (\vec{v} \times \vec{w}) = 8(\vec{a} \cdot (\vec{b} \times \vec{c})) + (\vec{a} \cdot (\vec{b} \times \vec{c})) = 9(\vec{a} \cdot (\vec{b} \times \vec{c})) \] 4. **Substitute the given value**: We know that \([\vec{a}, \vec{b}, \vec{c}] = 3\), which is equal to \(\vec{a} \cdot (\vec{b} \times \vec{c})\). \[ \vec{u} \cdot (\vec{v} \times \vec{w}) = 9 \times 3 = 27 \] 5. **Conclusion**: The volume of the parallelepiped is: \[ V = |\vec{u} \cdot (\vec{v} \times \vec{w})| = 27 \text{ cubic units} \]

To find the volume of the parallelepiped formed by the vectors \(2\vec{a} + \vec{b}\), \(2\vec{b} + \vec{c}\), and \(2\vec{c} + \vec{a}\), we can use the scalar triple product. The volume \(V\) of a parallelepiped defined by vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\) is given by: \[ V = |\vec{u} \cdot (\vec{v} \times \vec{w})| \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If |veca|=5, |vecb|=3, |vecc|=4 and veca is perpendicular to vecb and vecc such that angle between vecb and vecc is (5pi)/6 , then the volume of the parallelopiped having veca, vecb and vecc as three coterminous edges is

If the volume of the parallelepiped formed by the vectors veca xx vecb, vecb xx vecc and vecc xx veca is 36 cubic units, then the volume (in cubic units) of the tetrahedron formed by the vectors veca+vecb, vecb+vecc and vecc + veca is equal to

If the volume of the parallelopiped formed by the vectors veca, vecb, vecc as three coterminous edges is 27 units, then the volume of the parallelopiped having vec(alpha)=veca+2vecb-vecc, vec(beta)=veca-vecb and vec(gamma)=veca-vecb-vecc as three coterminous edges, is

The volume of a tetrahedron fomed by the coterminus edges veca , vecb and vecc is 3 . Then the volume of the parallelepiped formed by the coterminus edges veca +vecb, vecb+vecc and vecc + veca is

Prove that [veca+vecb,vecb+vecc,vecc+veca]=2[veca vecb vecc]

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

If veca=2hati-3hatj+5hatk , vecb=3hati-4hatj+5hatk and vecc=5hati-3hatj-2hatk , then the volume of the parallelopiped with coterminous edges veca+vecb,vecb+vecc,vecc+veca is

Prove that [ veca+ vecb , vecb+ vecc , vecc+ veca]=2[ veca , vecb , vecc] .

Let veca, vecb, vecc be three unit vectors such that veca. vecb=veca.vecc=0 , If the angle between vecb and vecc is (pi)/3 then the volume of the parallelopiped whose three coterminous edges are veca, vecb, vecc is

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  2. If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,...

    Text Solution

    |

  3. If [(veca,vecb,vecc)]=3, then the volume (in cubic units) of the paral...

    Text Solution

    |

  4. If V is the volume of the parallelepiped having three coterminous edge...

    Text Solution

    |

  5. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  6. If vectors vec A B=-3 hat i+4 hat ka n d vec A C=5 hat i-2 hat j+4 ha...

    Text Solution

    |

  7. Let the position vectors of vertices A,B,C of DeltaABC be respectively...

    Text Solution

    |

  8. The position vector of a point P is vecr=xhati+yhatj+zhatk where x,y,z...

    Text Solution

    |

  9. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  10. If the vectors 2ahati+bhatj+chatk, bhati+chatj+2ahatk and chati+2ahatj...

    Text Solution

    |

  11. Let alpha = a hati + b hatj + chatk , vecbeta = bhati + chatj + ahatk ...

    Text Solution

    |

  12. Let veca,vecb,vecc be three mutually perpendicular vectors having same...

    Text Solution

    |

  13. Let veca,vecb and vecc be the three non-coplanar vectors and vecd be a...

    Text Solution

    |

  14. Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |v...

    Text Solution

    |

  15. Let veca and vecc be unit vectors such that |vecb|=4 and vecaxxvecb=2(...

    Text Solution

    |

  16. If veca+2vecb+3vecc=0, then vecaxxvecb+vecbxxvecc+veccxxveca=

    Text Solution

    |

  17. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  18. Let A(2hat(i)+3hat(j)+5hat(k)), B(-hat(i)+3hat(j)+2hat(k)) and C(lambd...

    Text Solution

    |

  19. A plane is parallel to the vectors hati+hatj+hatk and 2hatk and anothe...

    Text Solution

    |

  20. If A,B,C,D are four points in space, then |vec(AB)xvec(CD)+vec(BC)xxve...

    Text Solution

    |