Home
Class 12
MATHS
Let the position vectors of vertices A,B...

Let the position vectors of vertices `A,B,C` of `DeltaABC` be respectively `veca,vecb` and `vecc`. If `vecr` is the position vector of the mid point of the line segment joining its orthocentre and centroid then `(veca-vecr)+(vecb-vecr)+(vecc-vecr)=`

A

A. 1

B

B. 2

C

C. 3

D

D. none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the expression \((\vec{a} - \vec{r}) + (\vec{b} - \vec{r}) + (\vec{c} - \vec{r})\), where \(\vec{r}\) is the position vector of the midpoint of the line segment joining the orthocenter and centroid of triangle \(ABC\). ### Step 1: Understand the Position Vectors Let the position vectors of the vertices of triangle \(ABC\) be: - \(\vec{A} = \vec{a}\) - \(\vec{B} = \vec{b}\) - \(\vec{C} = \vec{c}\) ### Step 2: Find the Centroid \(\vec{G}\) The centroid \(\vec{G}\) of triangle \(ABC\) is given by the formula: \[ \vec{G} = \frac{\vec{a} + \vec{b} + \vec{c}}{3} \] ### Step 3: Find the Orthocenter \(\vec{H}\) The orthocenter \(\vec{H}\) is a point that can be calculated using the properties of the triangle, but for this problem, we will use the fact that we need the midpoint of the segment joining \(\vec{G}\) and \(\vec{H}\). ### Step 4: Find the Midpoint \(\vec{r}\) The position vector \(\vec{r}\) of the midpoint of the line segment joining the orthocenter \(\vec{H}\) and the centroid \(\vec{G}\) is given by: \[ \vec{r} = \frac{\vec{G} + \vec{H}}{2} \] ### Step 5: Substitute \(\vec{G}\) in \(\vec{r}\) Substituting \(\vec{G}\) into the equation for \(\vec{r}\): \[ \vec{r} = \frac{\frac{\vec{a} + \vec{b} + \vec{c}}{3} + \vec{H}}{2} \] ### Step 6: Calculate the Expression Now we need to compute: \[ (\vec{a} - \vec{r}) + (\vec{b} - \vec{r}) + (\vec{c} - \vec{r}) \] This can be rewritten as: \[ (\vec{a} + \vec{b} + \vec{c}) - 3\vec{r} \] ### Step 7: Substitute \(\vec{r}\) into the Expression Substituting \(\vec{r}\) into the expression gives: \[ (\vec{a} + \vec{b} + \vec{c}) - 3\left(\frac{\frac{\vec{a} + \vec{b} + \vec{c}}{3} + \vec{H}}{2}\right) \] This simplifies to: \[ (\vec{a} + \vec{b} + \vec{c}) - \frac{\vec{a} + \vec{b} + \vec{c}}{2} - \frac{3\vec{H}}{2} \] ### Step 8: Combine Like Terms Combining the terms results in: \[ \frac{2(\vec{a} + \vec{b} + \vec{c})}{2} - \frac{\vec{a} + \vec{b} + \vec{c}}{2} - \frac{3\vec{H}}{2} = \frac{\vec{a} + \vec{b} + \vec{c}}{2} - \frac{3\vec{H}}{2} \] ### Step 9: Final Expression Thus, the final expression simplifies to: \[ \frac{\vec{a} + \vec{b} + \vec{c} - 3\vec{H}}{2} \] ### Conclusion The final answer is: \[ (\vec{a} - \vec{r}) + (\vec{b} - \vec{r}) + (\vec{c} - \vec{r}) = \frac{\vec{a} + \vec{b} + \vec{c} - 3\vec{H}}{2} \]

To solve the problem step by step, we need to find the expression \((\vec{a} - \vec{r}) + (\vec{b} - \vec{r}) + (\vec{c} - \vec{r})\), where \(\vec{r}\) is the position vector of the midpoint of the line segment joining the orthocenter and centroid of triangle \(ABC\). ### Step 1: Understand the Position Vectors Let the position vectors of the vertices of triangle \(ABC\) be: - \(\vec{A} = \vec{a}\) - \(\vec{B} = \vec{b}\) - \(\vec{C} = \vec{c}\) ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

veca,vecb,vecc are the position vectors of vertices A, B, C respectively of a paralleloram, ABCD, ifnd the position vector of D.

A straight line vecr=veca+lambda vecb meets the plane vecr. vec n=0 at p. Then position vector of P is

A, B, C and D have position vectors veca, vecb, vecc and vecd , repectively, such that veca-vecb = 2(vecd-vecc) . Then

A vectors vecr satisfies the equations vecr xx veca=vecb and vecr*veca=0 . Then

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)=

The length of the perpendicular from the origin to the plane passing through the points veca and containing the line vecr = vecb + lambda vecc is

If veca, vecb and vecc are position vectors of A,B, and C respectively of DeltaABC and if|veca-vecb|=4,|vecb-vec(c)|=2, |vecc-veca|=3 , then the distance between the centroid and incenter of triangleABC is

Let ABC be a triangle whose circumcenter is at P, if the positions vectors of A,B,C and P are veca,vecb,vecc and (veca + vecb+vecc)/4 respectively, then the positions vector of the orthocenter of this triangle, is:

If vecb is not perpendicular to vecc . Then find the vector vecr satisfying the equation vecr xx vecb = veca xx vecb and vecr. vecc=0

If vecb is not perpendicular to vecc . Then find the vector vecr satisfying the equation vecr xx vecb = veca xx vecb and vecr. vecc=0

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  2. If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,...

    Text Solution

    |

  3. If [(veca,vecb,vecc)]=3, then the volume (in cubic units) of the paral...

    Text Solution

    |

  4. If V is the volume of the parallelepiped having three coterminous edge...

    Text Solution

    |

  5. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  6. If vectors vec A B=-3 hat i+4 hat ka n d vec A C=5 hat i-2 hat j+4 ha...

    Text Solution

    |

  7. Let the position vectors of vertices A,B,C of DeltaABC be respectively...

    Text Solution

    |

  8. The position vector of a point P is vecr=xhati+yhatj+zhatk where x,y,z...

    Text Solution

    |

  9. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  10. If the vectors 2ahati+bhatj+chatk, bhati+chatj+2ahatk and chati+2ahatj...

    Text Solution

    |

  11. Let alpha = a hati + b hatj + chatk , vecbeta = bhati + chatj + ahatk ...

    Text Solution

    |

  12. Let veca,vecb,vecc be three mutually perpendicular vectors having same...

    Text Solution

    |

  13. Let veca,vecb and vecc be the three non-coplanar vectors and vecd be a...

    Text Solution

    |

  14. Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |v...

    Text Solution

    |

  15. Let veca and vecc be unit vectors such that |vecb|=4 and vecaxxvecb=2(...

    Text Solution

    |

  16. If veca+2vecb+3vecc=0, then vecaxxvecb+vecbxxvecc+veccxxveca=

    Text Solution

    |

  17. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  18. Let A(2hat(i)+3hat(j)+5hat(k)), B(-hat(i)+3hat(j)+2hat(k)) and C(lambd...

    Text Solution

    |

  19. A plane is parallel to the vectors hati+hatj+hatk and 2hatk and anothe...

    Text Solution

    |

  20. If A,B,C,D are four points in space, then |vec(AB)xvec(CD)+vec(BC)xxve...

    Text Solution

    |