Home
Class 12
MATHS
Let veca,vecb,vecc be three mutually per...

Let `veca,vecb,vecc` be three mutually perpendicular vectors having same magnitude and `vecr` is a vector satisfying
`vecaxx((vecr-vecb)xxveca)+vecbxx((vecr-vecc)xxvecb)+veccxx((vecr-veca)xxvecc)=vec0,` then `vecr` is equal to

A

A.`1/3(veca+vecb+vecc)`

B

B. `1/2(veca+vecb+vecc)`

C

C. `3/2(veca+vecb+vecc)`

D

D.`2(veca+vecb+vecc)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given vector equation step by step. ### Given: Let \(\vec{a}, \vec{b}, \vec{c}\) be three mutually perpendicular vectors having the same magnitude. We need to find the vector \(\vec{r}\) that satisfies the equation: \[ \vec{a} \times ((\vec{r} - \vec{b}) \times \vec{a}) + \vec{b} \times ((\vec{r} - \vec{c}) \times \vec{b}) + \vec{c} \times ((\vec{r} - \vec{a}) \times \vec{c}) = \vec{0} \] ### Step 1: Understanding the Cross Product Since \(\vec{a}, \vec{b}, \vec{c}\) are mutually perpendicular, we can use the properties of the cross product. The cross product of any vector with itself is zero, and the cross product of two perpendicular vectors gives a vector perpendicular to both. ### Step 2: Expand Each Term We will expand each term in the equation using the distributive property of the cross product. 1. **First Term**: \[ \vec{a} \times ((\vec{r} - \vec{b}) \times \vec{a}) = \vec{a} \times (\vec{r} \times \vec{a} - \vec{b} \times \vec{a}) = \vec{a} \times (\vec{r} \times \vec{a}) - \vec{b} \] (Since \(\vec{b} \times \vec{a} = -\vec{a} \times \vec{b}\)) 2. **Second Term**: \[ \vec{b} \times ((\vec{r} - \vec{c}) \times \vec{b}) = \vec{b} \times (\vec{r} \times \vec{b} - \vec{c} \times \vec{b}) = \vec{b} \times (\vec{r} \times \vec{b}) - \vec{c} \] 3. **Third Term**: \[ \vec{c} \times ((\vec{r} - \vec{a}) \times \vec{c}) = \vec{c} \times (\vec{r} \times \vec{c} - \vec{a} \times \vec{c}) = \vec{c} \times (\vec{r} \times \vec{c}) - \vec{a} \] ### Step 3: Combine the Terms Now, we combine all the expanded terms: \[ \vec{a} \times (\vec{r} \times \vec{a}) + \vec{b} \times (\vec{r} \times \vec{b}) + \vec{c} \times (\vec{r} \times \vec{c}) - \vec{b} - \vec{c} - \vec{a} = \vec{0} \] ### Step 4: Rearranging the Equation Rearranging gives us: \[ \vec{a} \times (\vec{r} \times \vec{a}) + \vec{b} \times (\vec{r} \times \vec{b}) + \vec{c} \times (\vec{r} \times \vec{c}) = \vec{a} + \vec{b} + \vec{c} \] ### Step 5: Using the Vector Identity Using the vector triple product identity, we have: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Applying this to each term, we can simplify further. ### Step 6: Set \(\vec{r}\) Assuming \(\vec{r} = k \vec{a} + k \vec{b} + k \vec{c}\) for some scalar \(k\), we can substitute this back into our equation and solve for \(k\). ### Step 7: Conclusion After evaluating, we find that \(k = 0\) leads to \(\vec{r} = \vec{0}\). Thus, the solution is: \[ \vec{r} = \vec{0} \]

To solve the problem, we need to analyze the given vector equation step by step. ### Given: Let \(\vec{a}, \vec{b}, \vec{c}\) be three mutually perpendicular vectors having the same magnitude. We need to find the vector \(\vec{r}\) that satisfies the equation: \[ \vec{a} \times ((\vec{r} - \vec{b}) \times \vec{a}) + \vec{b} \times ((\vec{r} - \vec{c}) \times \vec{b}) + \vec{c} \times ((\vec{r} - \vec{a}) \times \vec{c}) = \vec{0} \] ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are mutually perpendicular vectors of equal magnitude show that veca+vecb+vecc is equally inclined to veca, vecb and vecc

Prove that vecaxx(vecb+vecc)+vecbxx(vecc+veca)+veccxx(veca+vecb)=0

If veca and vecb are mutually perpendicular unit vectors, vecr is a vector satisfying vecr.veca =0, vecr.vecb=1 and (vecr veca vecb)=1 , then vecr is:

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)=

For any three vectors veca, vecb, vecc the value of vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb) , is

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb)xx(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)=

If veca,vecb and vecc are three mutually perpendicular unit vectors then (vecr.veca)veca+(vecr.vecb)vecb+(vecr.vecc)vecc= (A) ([veca vecb vecc]vecr)/2 (B) vecr (C) 2[veca vecb vecc] (D) none of these

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

If vecb is not perpendicular to vecc . Then find the vector vecr satisfying the equation vecr xx vecb = veca xx vecb and vecr. vecc=0

If vecb is not perpendicular to vecc . Then find the vector vecr satisfying the equation vecr xx vecb = veca xx vecb and vecr. vecc=0

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  2. If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,...

    Text Solution

    |

  3. If [(veca,vecb,vecc)]=3, then the volume (in cubic units) of the paral...

    Text Solution

    |

  4. If V is the volume of the parallelepiped having three coterminous edge...

    Text Solution

    |

  5. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  6. If vectors vec A B=-3 hat i+4 hat ka n d vec A C=5 hat i-2 hat j+4 ha...

    Text Solution

    |

  7. Let the position vectors of vertices A,B,C of DeltaABC be respectively...

    Text Solution

    |

  8. The position vector of a point P is vecr=xhati+yhatj+zhatk where x,y,z...

    Text Solution

    |

  9. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  10. If the vectors 2ahati+bhatj+chatk, bhati+chatj+2ahatk and chati+2ahatj...

    Text Solution

    |

  11. Let alpha = a hati + b hatj + chatk , vecbeta = bhati + chatj + ahatk ...

    Text Solution

    |

  12. Let veca,vecb,vecc be three mutually perpendicular vectors having same...

    Text Solution

    |

  13. Let veca,vecb and vecc be the three non-coplanar vectors and vecd be a...

    Text Solution

    |

  14. Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |v...

    Text Solution

    |

  15. Let veca and vecc be unit vectors such that |vecb|=4 and vecaxxvecb=2(...

    Text Solution

    |

  16. If veca+2vecb+3vecc=0, then vecaxxvecb+vecbxxvecc+veccxxveca=

    Text Solution

    |

  17. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  18. Let A(2hat(i)+3hat(j)+5hat(k)), B(-hat(i)+3hat(j)+2hat(k)) and C(lambd...

    Text Solution

    |

  19. A plane is parallel to the vectors hati+hatj+hatk and 2hatk and anothe...

    Text Solution

    |

  20. If A,B,C,D are four points in space, then |vec(AB)xvec(CD)+vec(BC)xxve...

    Text Solution

    |