Home
Class 12
MATHS
Let veca,vecb and vecc be the three non-...

Let `veca,vecb` and `vecc` be the three non-coplanar vectors and `vecd` be a non zero vector which is perpendicular to `veca+vecb+vecc` and is represented as `vecd=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca)`. Then,

A

`x^(3)+y^(3)+z^(3)=3xyz`

B

`xy+yz+zx=0`

C

`x=y=z`

D

`x^(2)+y^(2)+z^(2)=xy+yz+zx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given information about the vectors and their relationships. Here’s a step-by-step solution: ### Step 1: Understand the Problem We are given three non-coplanar vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), and a vector \(\vec{d}\) that is perpendicular to the sum of these vectors, i.e., \(\vec{d} \perp (\vec{a} + \vec{b} + \vec{c})\). The vector \(\vec{d}\) is expressed as: \[ \vec{d} = x (\vec{a} \times \vec{b}) + y (\vec{b} \times \vec{c}) + z (\vec{c} \times \vec{a}) \] ### Step 2: Set Up the Perpendicular Condition Since \(\vec{d}\) is perpendicular to \(\vec{a} + \vec{b} + \vec{c}\), we can write the dot product: \[ (\vec{a} + \vec{b} + \vec{c}) \cdot \vec{d} = 0 \] ### Step 3: Substitute \(\vec{d}\) Substituting the expression for \(\vec{d}\) into the dot product gives: \[ (\vec{a} + \vec{b} + \vec{c}) \cdot \left( x (\vec{a} \times \vec{b}) + y (\vec{b} \times \vec{c}) + z (\vec{c} \times \vec{a}) \right) = 0 \] ### Step 4: Expand the Dot Product Expanding this dot product, we have: \[ x (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} \times \vec{b}) + y (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{b} \times \vec{c}) + z (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{c} \times \vec{a}) = 0 \] ### Step 5: Analyze Each Term Using the property of the scalar triple product, we know that: - \((\vec{u} \cdot (\vec{v} \times \vec{w})) = \text{Volume of the parallelepiped formed by } \vec{u}, \vec{v}, \vec{w}\) Thus, each term can be evaluated: 1. \((\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} \times \vec{b}) = 0\) (since \(\vec{a} \times \vec{b}\) is perpendicular to both \(\vec{a}\) and \(\vec{b}\)) 2. \((\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{b} \times \vec{c}) = 0\) 3. \((\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{c} \times \vec{a}) = 0\) ### Step 6: Combine the Results Since all terms equal zero, we can conclude: \[ x + y + z = 0 \] ### Step 7: Conclusion The final result leads us to the conclusion that: \[ x + y + z = 0 \]

To solve the problem, we need to analyze the given information about the vectors and their relationships. Here’s a step-by-step solution: ### Step 1: Understand the Problem We are given three non-coplanar vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), and a vector \(\vec{d}\) that is perpendicular to the sum of these vectors, i.e., \(\vec{d} \perp (\vec{a} + \vec{b} + \vec{c})\). The vector \(\vec{d}\) is expressed as: \[ \vec{d} = x (\vec{a} \times \vec{b}) + y (\vec{b} \times \vec{c}) + z (\vec{c} \times \vec{a}) \] ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a non -zero , which is perpendicular to (veca + vecb + vecc). Now vecd = (veca xx vecb) sin x + (vecb xx vecc) cos y + 2 (vecc xx veca) . Then

Let veca,vecb,vecc be three non coplanar and vecd be a vector which is perpendicular to veca + vecb + vecc . If vecd = xvecb xx vecc + yvecc xx veca + zveca xx vecb the-

If veca, vecb, vecc are three vectors, then [(vecaxxvecb, vecbxxvecc, veccxxveca)]=

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

For three vectors veca+vecb+vecc=0 , check if (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)=

If veca,vecb and vecc are three mutually perpendicular unit vectors and vecd is a unit vector which makes equal angle with veca,vecb and vecc , then find the value of |veca+vecb+vecc+vecd|^(2) .

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If vecAxxvecB=vecC , then choose the incorrect option : [ vecA and vecB are non zero vectors]

If veca , vecb , vecc and vecd are four non-coplanar unit vectors such that vecd makes equal angles with all the three vectors veca, vecb, vecc then prove that [vecd vecavecb]=[vecd veccvecb]=[vecd veccveca]

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  2. If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,...

    Text Solution

    |

  3. If [(veca,vecb,vecc)]=3, then the volume (in cubic units) of the paral...

    Text Solution

    |

  4. If V is the volume of the parallelepiped having three coterminous edge...

    Text Solution

    |

  5. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  6. If vectors vec A B=-3 hat i+4 hat ka n d vec A C=5 hat i-2 hat j+4 ha...

    Text Solution

    |

  7. Let the position vectors of vertices A,B,C of DeltaABC be respectively...

    Text Solution

    |

  8. The position vector of a point P is vecr=xhati+yhatj+zhatk where x,y,z...

    Text Solution

    |

  9. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  10. If the vectors 2ahati+bhatj+chatk, bhati+chatj+2ahatk and chati+2ahatj...

    Text Solution

    |

  11. Let alpha = a hati + b hatj + chatk , vecbeta = bhati + chatj + ahatk ...

    Text Solution

    |

  12. Let veca,vecb,vecc be three mutually perpendicular vectors having same...

    Text Solution

    |

  13. Let veca,vecb and vecc be the three non-coplanar vectors and vecd be a...

    Text Solution

    |

  14. Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |v...

    Text Solution

    |

  15. Let veca and vecc be unit vectors such that |vecb|=4 and vecaxxvecb=2(...

    Text Solution

    |

  16. If veca+2vecb+3vecc=0, then vecaxxvecb+vecbxxvecc+veccxxveca=

    Text Solution

    |

  17. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  18. Let A(2hat(i)+3hat(j)+5hat(k)), B(-hat(i)+3hat(j)+2hat(k)) and C(lambd...

    Text Solution

    |

  19. A plane is parallel to the vectors hati+hatj+hatk and 2hatk and anothe...

    Text Solution

    |

  20. If A,B,C,D are four points in space, then |vec(AB)xvec(CD)+vec(BC)xxve...

    Text Solution

    |