Home
Class 12
MATHS
Let veca and vecc be unit vectors such t...

Let `veca` and `vecc` be unit vectors such that `|vecb|=4` and `vecaxxvecb=2(vecaxxvecc)`. The angle between `veca` and `vecc` is `cos^(-1)(1/4)`. If `vecb-2vecc=lamdaveca` then `lamda=`

A

`1/3,1/4`

B

`-1/3,-1/4`

C

`3,-4`

D

`-3,4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow a step-by-step approach: ### Step 1: Understand the Given Information We have: - \(\vec{a}\) and \(\vec{c}\) are unit vectors, so \(|\vec{a}| = 1\) and \(|\vec{c}| = 1\). - \(|\vec{b}| = 4\). - The relationship given is \(\vec{a} \times \vec{b} = 2(\vec{a} \times \vec{c})\). - The angle between \(\vec{a}\) and \(\vec{c}\) is given by \(\cos^{-1}(1/4)\). ### Step 2: Express \(\vec{b}\) in terms of \(\vec{a}\) and \(\vec{c}\) From the equation \(\vec{b} - 2\vec{c} = \lambda \vec{a}\), we can rearrange it to find \(\vec{b}\): \[ \vec{b} = \lambda \vec{a} + 2\vec{c} \] ### Step 3: Calculate the Magnitude of \(\vec{b}\) Taking the magnitude of both sides: \[ |\vec{b}| = |\lambda \vec{a} + 2\vec{c}| \] Since \(|\vec{b}| = 4\), we have: \[ 4 = |\lambda \vec{a} + 2\vec{c}| \] ### Step 4: Use the Magnitude Formula Using the formula for the magnitude of a vector: \[ |\vec{b}|^2 = |\lambda \vec{a} + 2\vec{c}|^2 \] Expanding this, we get: \[ |\vec{b}|^2 = |\lambda \vec{a}|^2 + |2\vec{c}|^2 + 2(\lambda \vec{a} \cdot 2\vec{c}) \] Substituting the magnitudes: \[ 16 = \lambda^2 |\vec{a}|^2 + 4|\vec{c}|^2 + 4\lambda (\vec{a} \cdot \vec{c}) \] Since \(|\vec{a}| = 1\) and \(|\vec{c}| = 1\), this simplifies to: \[ 16 = \lambda^2 + 4 + 4\lambda (\vec{a} \cdot \vec{c}) \] ### Step 5: Find \(\vec{a} \cdot \vec{c}\) Using the cosine of the angle between \(\vec{a}\) and \(\vec{c}\): \[ \vec{a} \cdot \vec{c} = |\vec{a}||\vec{c}|\cos(\theta) = 1 \cdot 1 \cdot \frac{1}{4} = \frac{1}{4} \] ### Step 6: Substitute Back into the Equation Substituting \(\vec{a} \cdot \vec{c} = \frac{1}{4}\) into our equation: \[ 16 = \lambda^2 + 4 + 4\lambda \left(\frac{1}{4}\right) \] This simplifies to: \[ 16 = \lambda^2 + 4 + \lambda \] Rearranging gives: \[ \lambda^2 + \lambda - 12 = 0 \] ### Step 7: Solve the Quadratic Equation We can factor or use the quadratic formula to solve for \(\lambda\): \[ \lambda^2 + \lambda - 12 = 0 \] Factoring gives: \[ (\lambda - 3)(\lambda + 4) = 0 \] Thus, \(\lambda = 3\) or \(\lambda = -4\). ### Final Answer The values of \(\lambda\) are \(3\) and \(-4\).

To solve the problem, we will follow a step-by-step approach: ### Step 1: Understand the Given Information We have: - \(\vec{a}\) and \(\vec{c}\) are unit vectors, so \(|\vec{a}| = 1\) and \(|\vec{c}| = 1\). - \(|\vec{b}| = 4\). - The relationship given is \(\vec{a} \times \vec{b} = 2(\vec{a} \times \vec{c})\). - The angle between \(\vec{a}\) and \(\vec{c}\) is given by \(\cos^{-1}(1/4)\). ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

Let vea, vecb and vecc be unit vectors such that veca.vecb=0 = veca.vecc . It the angle between vecb and vecc is pi/6 then find veca .

veca and vecc are unit vectors and |vecb|=4 the angle between veca and vecc is cos ^(-1)(1//4) and vecb - 2vecc=lambdaveca the value of lambda is

veca and vecc are unit vectors and |vecb|=4 the angle between veca and vecb is cos ^(-1)(1//4) and vecb - 2vecc=lambdaveca the value of lambda is

If three vectors veca, vecb,vecc are such that veca ne 0 and veca xx vecb = 2(veca xx vecc),|veca|=|vecc|=1, |vecb|=4 and the angle between vecb and vecc is cos^(-1)(1//4) , then vecb-2vecc= lambda veca where lambda is equal to:

veca and vecb are two vectors such that |veca|=1 ,|vecb|=4 and veca. Vecb =2 . If vecc = (2vecaxx vecb) - 3vecb then find angle between vecb and vecc .

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

Let veca , vecb and vecc be unit vectors such that veca+vecb+vecc=vecx, veca.vecx =1, vecb.vecx = 3/2 ,|vecx|=2 then find theh angle between vecc and vecx .

Let veca , vecb and vecc be unit vectors such that veca+vecb+vecc=vecx, veca.vecx =1, vecb.vecx = 3/2 ,|vecx|=2 then find theh angle between vecc and vecx .

If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(veccxxvecd)=1 and veca.vecc=1/2, then

If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  2. If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,...

    Text Solution

    |

  3. If [(veca,vecb,vecc)]=3, then the volume (in cubic units) of the paral...

    Text Solution

    |

  4. If V is the volume of the parallelepiped having three coterminous edge...

    Text Solution

    |

  5. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  6. If vectors vec A B=-3 hat i+4 hat ka n d vec A C=5 hat i-2 hat j+4 ha...

    Text Solution

    |

  7. Let the position vectors of vertices A,B,C of DeltaABC be respectively...

    Text Solution

    |

  8. The position vector of a point P is vecr=xhati+yhatj+zhatk where x,y,z...

    Text Solution

    |

  9. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  10. If the vectors 2ahati+bhatj+chatk, bhati+chatj+2ahatk and chati+2ahatj...

    Text Solution

    |

  11. Let alpha = a hati + b hatj + chatk , vecbeta = bhati + chatj + ahatk ...

    Text Solution

    |

  12. Let veca,vecb,vecc be three mutually perpendicular vectors having same...

    Text Solution

    |

  13. Let veca,vecb and vecc be the three non-coplanar vectors and vecd be a...

    Text Solution

    |

  14. Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |v...

    Text Solution

    |

  15. Let veca and vecc be unit vectors such that |vecb|=4 and vecaxxvecb=2(...

    Text Solution

    |

  16. If veca+2vecb+3vecc=0, then vecaxxvecb+vecbxxvecc+veccxxveca=

    Text Solution

    |

  17. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  18. Let A(2hat(i)+3hat(j)+5hat(k)), B(-hat(i)+3hat(j)+2hat(k)) and C(lambd...

    Text Solution

    |

  19. A plane is parallel to the vectors hati+hatj+hatk and 2hatk and anothe...

    Text Solution

    |

  20. If A,B,C,D are four points in space, then |vec(AB)xvec(CD)+vec(BC)xxve...

    Text Solution

    |