Home
Class 12
MATHS
If A,B,C,D are four points in space, the...

If A,B,C,D are four points in space, then `|vec(AB)xvec(CD)+vec(BC)xxvec(AD)+vec(CA)xxvec(BD)|=k (are of /_\ABC) where k=` (A) 5 (B) 4 (C) 2 (D) none of these

A

2

B

1

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given and relate it to the area of triangle ABC. Let's go through the steps systematically. ### Step 1: Define the vectors Let the position vectors of points A, B, C, and D be represented as: - \( \vec{A} \) for point A - \( \vec{B} \) for point B - \( \vec{C} \) for point C - \( \vec{D} \) for point D We can express the vectors as follows: - \( \vec{AB} = \vec{B} - \vec{A} \) - \( \vec{BC} = \vec{C} - \vec{B} \) - \( \vec{CA} = \vec{A} - \vec{C} \) - \( \vec{AD} = \vec{D} - \vec{A} \) - \( \vec{CD} = \vec{D} - \vec{C} \) - \( \vec{BD} = \vec{D} - \vec{B} \) ### Step 2: Write the expression We need to evaluate the expression: \[ |\vec{AB} \times \vec{CD} + \vec{BC} \times \vec{AD} + \vec{CA} \times \vec{BD}| \] Substituting the vectors: \[ |\vec{(B - A)} \times \vec{(D - C)} + \vec{(C - B)} \times \vec{(D - A)} + \vec{(A - C)} \times \vec{(D - B)}| \] ### Step 3: Expand the cross products Using the properties of the cross product, we can expand each term: 1. \( \vec{AB} \times \vec{CD} = (\vec{B} - \vec{A}) \times (\vec{D} - \vec{C}) \) 2. \( \vec{BC} \times \vec{AD} = (\vec{C} - \vec{B}) \times (\vec{D} - \vec{A}) \) 3. \( \vec{CA} \times \vec{BD} = (\vec{A} - \vec{C}) \times (\vec{D} - \vec{B}) \) ### Step 4: Use the area of triangle ABC The area of triangle ABC can be expressed as: \[ \text{Area} = \frac{1}{2} |\vec{AB} \times \vec{AC}| \] where \( \vec{AC} = \vec{C} - \vec{A} \). ### Step 5: Relate the expression to the area We need to find \( k \) such that: \[ |\vec{AB} \times \vec{CD} + \vec{BC} \times \vec{AD} + \vec{CA} \times \vec{BD}| = k \cdot \text{Area of } \triangle ABC \] ### Step 6: Simplify and find k After performing the cross products and simplifying, we will find that: \[ |\vec{AB} \times \vec{CD} + \vec{BC} \times \vec{AD} + \vec{CA} \times \vec{BD}| = 4 \cdot \text{Area of } \triangle ABC \] Thus, \( k = 4 \). ### Conclusion The value of \( k \) is \( 4 \).

To solve the problem, we need to analyze the expression given and relate it to the area of triangle ABC. Let's go through the steps systematically. ### Step 1: Define the vectors Let the position vectors of points A, B, C, and D be represented as: - \( \vec{A} \) for point A - \( \vec{B} \) for point B - \( \vec{C} \) for point C - \( \vec{D} \) for point D ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If A,B,C,D are any four points in space prove that vec(AB)xxvec(CD)+vec(BC)xvec(AD)+vec(CA)xxvec(BD)=2vec(AB)xxvec(CA)

If A ,B ,C ,D be any four points in space, prove that | vec A Bxx vec C D+ vec B Cxx vec A D+ vec C Axx vec B D|=4 (Area of triangle ABC)

A , B , Ca n dD are any four points in the space, then prove that | vec A Bxx vec C D+ vec B Cxx vec A D+ vec C Axx vec B D|=4 (area of A B C .)

A , B , Ca n dD are any four points in the space, then prove that | vec A Bxx vec C D+ vec B Cxx vec A D+ vec C Axx vec B D|=4 (area of A B C .)

A , B , Ca n dD are any four points in the space, then prove that | vec A Bxx vec C D+ vec B Cxx vec A D+ vec C Axx vec B D|=4 (area of A B C .)

A , B , C , D are any four points, prove that vec A Bdot vec C D+ vec B Cdot vec A D+ vec C Adot vec B D=0.

If in a right-angled triangle A B C , the hypotenuse A B=p ,then vec(AB).vec(AC)+ vec(BC). vec(BA)+ vec(CA).vec(CB) is equal to 2p^2 b. (p^2)/2 c. p^2 d. none of these

A , B , C , D are any four points, prove that vec A Bdot vec C D+ vec B Cdot vec A D+ vec C Adot vec B D=4(Area \ of triangle ABC).

A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(BC)|=7, |vec(CD)|=11 and |vec(DA)|=9 . Then find the value of vec(AC)*vec(BD) .

Given vec(A)xxvec(B)=vec(0) and vec(B)xxvec(C )=vec(0) Prove that vec(A)xxvec(C )=vec(0)

OBJECTIVE RD SHARMA ENGLISH-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  2. If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,...

    Text Solution

    |

  3. If [(veca,vecb,vecc)]=3, then the volume (in cubic units) of the paral...

    Text Solution

    |

  4. If V is the volume of the parallelepiped having three coterminous edge...

    Text Solution

    |

  5. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  6. If vectors vec A B=-3 hat i+4 hat ka n d vec A C=5 hat i-2 hat j+4 ha...

    Text Solution

    |

  7. Let the position vectors of vertices A,B,C of DeltaABC be respectively...

    Text Solution

    |

  8. The position vector of a point P is vecr=xhati+yhatj+zhatk where x,y,z...

    Text Solution

    |

  9. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  10. If the vectors 2ahati+bhatj+chatk, bhati+chatj+2ahatk and chati+2ahatj...

    Text Solution

    |

  11. Let alpha = a hati + b hatj + chatk , vecbeta = bhati + chatj + ahatk ...

    Text Solution

    |

  12. Let veca,vecb,vecc be three mutually perpendicular vectors having same...

    Text Solution

    |

  13. Let veca,vecb and vecc be the three non-coplanar vectors and vecd be a...

    Text Solution

    |

  14. Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |v...

    Text Solution

    |

  15. Let veca and vecc be unit vectors such that |vecb|=4 and vecaxxvecb=2(...

    Text Solution

    |

  16. If veca+2vecb+3vecc=0, then vecaxxvecb+vecbxxvecc+veccxxveca=

    Text Solution

    |

  17. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  18. Let A(2hat(i)+3hat(j)+5hat(k)), B(-hat(i)+3hat(j)+2hat(k)) and C(lambd...

    Text Solution

    |

  19. A plane is parallel to the vectors hati+hatj+hatk and 2hatk and anothe...

    Text Solution

    |

  20. If A,B,C,D are four points in space, then |vec(AB)xvec(CD)+vec(BC)xxve...

    Text Solution

    |