Home
Class 12
MATHS
The domain of definition of f(X) = sin^(...

The domain of definition of f(X) = `sin^(-1)(-x^(2))` is

A

`[-1,1]`

B

`[0,1]`

C

`[-1,0]`

D

`[-2,23]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sin^{-1}(-x^2) \), we need to determine the values of \( x \) for which the expression inside the inverse sine function is valid. The inverse sine function, \( \sin^{-1}(y) \), is defined for \( y \) in the interval \([-1, 1]\). ### Step-by-step Solution: 1. **Set up the inequality**: Since \( f(x) = \sin^{-1}(-x^2) \), we need to ensure that the argument \(-x^2\) lies within the interval \([-1, 1]\). Therefore, we set up the inequality: \[ -1 \leq -x^2 \leq 1 \] 2. **Solve the left side of the inequality**: Start with the left part of the inequality: \[ -1 \leq -x^2 \] Multiplying through by -1 (remember to reverse the inequality): \[ 1 \geq x^2 \quad \text{or} \quad x^2 \leq 1 \] 3. **Solve the right side of the inequality**: Now consider the right part of the inequality: \[ -x^2 \leq 1 \] Again, multiplying through by -1 (reversing the inequality): \[ x^2 \geq -1 \] Since \( x^2 \) is always non-negative, this inequality is always true. 4. **Combine the results**: From the first part, we found that: \[ x^2 \leq 1 \] This implies: \[ -1 \leq x \leq 1 \] 5. **Conclusion**: The domain of the function \( f(x) = \sin^{-1}(-x^2) \) is: \[ [-1, 1] \] ### Final Answer: The domain of definition of \( f(x) = \sin^{-1}(-x^2) \) is \([-1, 1]\).

To find the domain of the function \( f(x) = \sin^{-1}(-x^2) \), we need to determine the values of \( x \) for which the expression inside the inverse sine function is valid. The inverse sine function, \( \sin^{-1}(y) \), is defined for \( y \) in the interval \([-1, 1]\). ### Step-by-step Solution: 1. **Set up the inequality**: Since \( f(x) = \sin^{-1}(-x^2) \), we need to ensure that the argument \(-x^2\) lies within the interval \([-1, 1]\). Therefore, we set up the inequality: \[ -1 \leq -x^2 \leq 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|71 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

The domain of definition of f(x)=sin^(- 1)[2-4x^2] is ([.] denotes the greatest integer function).

The domain of definition of f (x) = sin ^(-1) {log_(2)(x^(2) + 3x + 4)} , is

The domain of definition of f(x)=cos^(- 1)(x+[x]) is

Find the domain of definition of f(x)=cos^(-1)(x^2-4) .

The domain of definition of cos^(-1)(2x-1) is

The domain of definition of f(x) = sqrt(sec^(-1){(1-|x|)/(2)}) is

The domain of definition of f(x) = sqrt(e^(cos-1)(log_(4) x^(2))) is

The domain of definition of the function f(x)=sin^(-1)((x-3)/(2))-log_(10)(4-x) , is

The domain of definition of the function f(x)=sin^(-1)((4)/(3+2 cos x)) , is

Suppose f, g, and h be three real valued function defined on R. Let f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|) and h(x) = f(g(x)) The domain of definition of the function l (x) = sin^(-1) ( f(x) - g (x) ) is equal to

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Chapter Test
  1. The domain of definition of f(X) = sin^(-1)(-x^(2)) is

    Text Solution

    |

  2. Solve sin^(-1)(1-x)-2sin ^(-1)x=pi/2

    Text Solution

    |

  3. If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

    Text Solution

    |

  4. If tantheta + tan(theta + pi/3) + tan(theta-pi/3)= Ktan3theta, then K ...

    Text Solution

    |

  5. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  6. The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to

    Text Solution

    |

  7. If tan(x+y)=33, and x= tan^(-1)3, then: y=

    Text Solution

    |

  8. Two angles of a triangle are cot^-1 2 and cot^-1 3, then the third ang...

    Text Solution

    |

  9. The greater of the two angles A=2tan^(-1)(2sqrt(2)-1) and B=3sin^(-1)(...

    Text Solution

    |

  10. Let a, b and c be positive real numbers. Then prove that tan^(-1) sqrt...

    Text Solution

    |

  11. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) the value of x^(100)+y^(10...

    Text Solution

    |

  12. The value of (alpha^(3))/(2) cosec^(2) ((1)/(2) tan^(-1) ((alpha)/(bet...

    Text Solution

    |

  13. If a,b are positive quantitis and if a(1)=(a+b)/(2), b(1)=sqrt(a(1)b) ...

    Text Solution

    |

  14. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equ...

    Text Solution

    |

  15. If a(1), a(2), a(3),...., a(n) is an A.P. with common difference d, th...

    Text Solution

    |

  16. If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

    Text Solution

    |

  17. Which of the following angles is greater? theta1=sin^(-1)+sin^(-1)1/3o...

    Text Solution

    |

  18. The value of cos[1/2 cos^(-1){cos(sin^(-1)((sqrt63)/(8)))}] is

    Text Solution

    |

  19. Solve for x: - tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1) (8/31)

    Text Solution

    |

  20. If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)...

    Text Solution

    |

  21. The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

    Text Solution

    |