Home
Class 12
MATHS
The vlaue of tan^(-1)sqrt(3)-sec^(-1)(...

The vlaue of
`tan^(-1)sqrt(3)-sec^(-1)(-2)+cosec^(-1)(2)/sqrt(3)` is

A

`(pi)/(3)`

B

`-(pi)/(3)`

C

0

D

`(4pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}(\sqrt{3}) - \sec^{-1}(-2) + \csc^{-1}\left(\frac{2}{\sqrt{3}}\right) \), we will evaluate each term step by step. ### Step 1: Evaluate \( \tan^{-1}(\sqrt{3}) \) We know that: \[ \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \] Thus, \[ \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \] ### Step 2: Evaluate \( \sec^{-1}(-2) \) The secant function is defined as: \[ \sec(x) = \frac{1}{\cos(x)} \] To find \( \sec^{-1}(-2) \), we need to find an angle \( x \) such that: \[ \sec(x) = -2 \implies \cos(x) = -\frac{1}{2} \] The angle \( x \) that satisfies this is: \[ x = \frac{2\pi}{3} \quad \text{(since } \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}\text{)} \] Thus, \[ \sec^{-1}(-2) = \frac{2\pi}{3} \] ### Step 3: Evaluate \( \csc^{-1}\left(\frac{2}{\sqrt{3}}\right) \) We know that: \[ \csc(x) = \frac{1}{\sin(x)} \] To find \( \csc^{-1}\left(\frac{2}{\sqrt{3}}\right) \), we need to find an angle \( x \) such that: \[ \csc(x) = \frac{2}{\sqrt{3}} \implies \sin(x) = \frac{\sqrt{3}}{2} \] The angle \( x \) that satisfies this is: \[ x = \frac{\pi}{3} \quad \text{(since } \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}\text{)} \] Thus, \[ \csc^{-1}\left(\frac{2}{\sqrt{3}}\right) = \frac{\pi}{3} \] ### Step 4: Combine all the values Now we can substitute back into the original expression: \[ \tan^{-1}(\sqrt{3}) - \sec^{-1}(-2) + \csc^{-1}\left(\frac{2}{\sqrt{3}}\right) = \frac{\pi}{3} - \frac{2\pi}{3} + \frac{\pi}{3} \] Calculating this gives: \[ = \frac{\pi}{3} - \frac{2\pi}{3} + \frac{\pi}{3} = 0 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{0} \]

To solve the expression \( \tan^{-1}(\sqrt{3}) - \sec^{-1}(-2) + \csc^{-1}\left(\frac{2}{\sqrt{3}}\right) \), we will evaluate each term step by step. ### Step 1: Evaluate \( \tan^{-1}(\sqrt{3}) \) We know that: \[ \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \] Thus, ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|71 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

The value of tan^(-1)(sqrt3)+cos^(-1)((-1)/sqrt2)+sec^(-1)((-2)/sqrt3) is

cosec"^(-1)(-sqrt(2))

Find the value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+sec^(-1)(-sqrt2) .

The value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+tan^(-1)(sqrt3) is

Find the principal value of cot^(-1)(-sqrt3)+2cosec^(-1)(-2)+cos^(-1)(-sqrt3/2)

The value of cot^(-1)(-1)+cosec^(-1)(-sqrt(2))+sec^(-1)(2) is

The value of tan^(2) (sec^(-1)2)+ cot^(2) ("cosec"^(-1)3) is

Evaluate each of the following: (i) cot^(-1)(1/(sqrt(3)))-"cosec"^(-1)(-2)+sec^(-1)(2/(sqrt(3))) (ii) cot^(-1){2cos(sin^(-1)((sqrt(3))/2))}

Find the principal value of tan^(-1)sqrt(3)-sec^(-1)(-2)

The vlaue of tan^(-1)1/2+tan^(-1)1/3 is

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Chapter Test
  1. The vlaue of tan^(-1)sqrt(3)-sec^(-1)(-2)+cosec^(-1)(2)/sqrt(3) is

    Text Solution

    |

  2. Solve sin^(-1)(1-x)-2sin ^(-1)x=pi/2

    Text Solution

    |

  3. If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

    Text Solution

    |

  4. If tantheta + tan(theta + pi/3) + tan(theta-pi/3)= Ktan3theta, then K ...

    Text Solution

    |

  5. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  6. The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to

    Text Solution

    |

  7. If tan(x+y)=33, and x= tan^(-1)3, then: y=

    Text Solution

    |

  8. Two angles of a triangle are cot^-1 2 and cot^-1 3, then the third ang...

    Text Solution

    |

  9. The greater of the two angles A=2tan^(-1)(2sqrt(2)-1) and B=3sin^(-1)(...

    Text Solution

    |

  10. Let a, b and c be positive real numbers. Then prove that tan^(-1) sqrt...

    Text Solution

    |

  11. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) the value of x^(100)+y^(10...

    Text Solution

    |

  12. The value of (alpha^(3))/(2) cosec^(2) ((1)/(2) tan^(-1) ((alpha)/(bet...

    Text Solution

    |

  13. If a,b are positive quantitis and if a(1)=(a+b)/(2), b(1)=sqrt(a(1)b) ...

    Text Solution

    |

  14. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equ...

    Text Solution

    |

  15. If a(1), a(2), a(3),...., a(n) is an A.P. with common difference d, th...

    Text Solution

    |

  16. If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

    Text Solution

    |

  17. Which of the following angles is greater? theta1=sin^(-1)+sin^(-1)1/3o...

    Text Solution

    |

  18. The value of cos[1/2 cos^(-1){cos(sin^(-1)((sqrt63)/(8)))}] is

    Text Solution

    |

  19. Solve for x: - tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1) (8/31)

    Text Solution

    |

  20. If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)...

    Text Solution

    |

  21. The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

    Text Solution

    |